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A B S T R A C T

This paper proposes a mixed integer program (MIP) for the network design problem of a parcel carrier that
manages online orders from omnichannel retailers. The network includes several types of facilities, such as city
distribution centers, intermediary depots, parcel offices, as well as collect channel points, such as automated
parcel stations (APS), stores or kiosks. The model formulation takes into account the influence of these collection
points on consumer choice and the maximum distance customers are willing to walk to reach them. Realistic
transportation costs are also considered, including detailed long haul costs and delivery costs in an area. The
transportation costs inside an area are estimated via the Continuous Approximation proposed by Newell (1971)
and Newell (1973), which results in a simpler problem than a location-routing problem, however, at the cost of
losing linearity. For a special case of the problem, we propose a heuristic that, in our experimental setting, is on
average 42.5 faster than the overall MIP and gives solutions within 1.02% of the optimum. Finally, we use the
model to discuss the network design of a Spanish parcel carrier operating in Madrid.

1. Introduction

In current retail, when consumers are shifting from one trading
channel to another, the boundaries between e-commerce and purchases
in physical stores are hard to identify. According to e-marketer
(Lipsman, 2019) statistics, at the end of 2019, the anual retail e-com-
merce sales would have grown worldwide by 20.7% compared to 2018,
with a retail share of 14.7%, equivalent to 3.535 trillion dollars. It is
expected that in 2023 the e-commerce share will reach 22%.

Digital catalogues of products and a wide variety of support services
attached to them are increasing channel migrations. Rigby (2011) re-
fered to omnichannel retailing as a process that enables retailers to
interact with customers through countless channels. New delivery
channels, such as Automated Parcel Stations (APS), provide added
convenience to customers and help to increase their loyalty. At the
same time, they are beneficial for retailers and parcel carriers, as they
have the potential of reducing transportation costs and help to avoid
repeated delivery visits (McLeod, Cherret, & Song, 2006).

Parcel carriers or Third Party Logistics Providers (3PLs) play a very
important role in last mile distribution of online orders. They often
provide customers several choices such as home delivery and click and
collect (Lang & Bressolles, 2013). Click and collect include several

options such as in store pick up, APSs, delivery at gas stations and
kiosks. Several recent survey based studies indicated that price, location
of click and collect services and trackability of parcels are main factors
in the adoption of new delivery channels (de Oliveira, Morganti,
Dablanc, & de Oliveira, 2017; Iwan, Kijewska, & Lemke, 2016). Al-
though the number of facilities installed impacts the customers’ pre-
ferences for a specific delivery channel through the distance that cus-
tomers need to travel, this relationship has not yet been taken into
account in the quantitative models used to design the delivery network
of a 3PL.

Our paper focuses on the modeling of the last mile distribution
network of a typical parcel carrier (or 3PL) that copes with the delivery
of online orders and subsequent pick up of commercial returns through
different existing and new channels (APSs, kiosks, stores). In particular,
the paper takes into account customer preferences for the delivery
mode, the maximum walking distance to a delivery option and the
impact of channel availability on customers’ chanel choice. We consider
demand per chanel to be endogenoeus to the model, by assuming that
more installed channels of a certain type generate more demand for that
specific channel type, due to convenience and increased customer fa-
miliarity with the delivery mode. Furthermore, we take explicitely into
account the distance customers are willing to walk to pick up
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deliveries/return products.
The paper is structured as follows: Section 2 discusses recent lit-

erature and the contribution of the paper. Section 3 describes the
problem and summarizes it in a conceptual framework that is used to
develop a non-linear mixed integer programming (MIP) model in Sec-
tion 4. Section 5 proposes a fast MIP- based heuristic for a special case
of the problem. In Section 6 the model is applied to a relevant Spanish
parcel distribution network. Section 7 discusses the performance of the
heuristic. Section 8 contains conclusions and discussions.

2. Literature review

Efficient back-end fulfillment, last mile distribution and returns pick
up and processing are considered to be key logistics processes for om-
nichannel retailers. (see Hübner, Kuhn, & Wollenburg, 2016; Marchet,
Melacini, Perotti, Rasini, & Tappia, 2018). We will next revise recent
literature related to each of these processes.

Back-end Fulfillment. Different products such as fast-moving con-
sumer goods, apparel and electronic appliances require different ful-
fillment allocation strategies. de Koster (2002) describes the pros and
cons of different fulfillment strategies, such as distributing from a
dedicated fulfilment center, from stores or from a hybrid structure.

Zhang, Lee, Wu, and Choy (2016) and Yadav, Tripathi, and Singh
(2017) compare a flexible network design in which customer orders can
be fulfilled directly from the most appropriate echelon (manufacturer,
central distribution center, regional distribution center) to a traditional
design, in which customers are served only from regional DCs. Due to
better facilities utilization, the flexible network design proves to be
superior to the traditional design, under different objectives, such as:
facilities and transportation costs, environmental cost and maximum
customer coverage. A similar conclusion is reached in Yadav, Tripathi,
and Singh (2019), where a flexible network design is compared to a
traditional one, under uncertainty of the online demand. As omni-
channel retailers usually have very large networks, finding optimal
solutions to the network design problem in reasonable time can be
difficult. Zhang et al. (2016) and Zhang, Zhu, Li, and Wang (2019)
develop very efficient meta-heuristics for dealing with the design of a
flexible distribution network, under both deterministic and random
demand. The model we consider in this paper can be seen as a hybrid
model. There is a flexibility for distribution to the new channels via a
nearby store or via the intermediate(regional) depots, which in turn get
the merchandise from the central distribution centers. However, dis-
tribution to existing channels can be done only from the CDCs, due to
economy of scale in transportation, while distribution to new channels
is done via intermediate depots, due to the advantage of aggregating
orders to a certain district.

Another recent literature stream focusses on exploiting the ad-
vantages obtained by an omnichannel retailer from pooling online de-
mand and deciding from which facility to fulfill it (see Acimovic &
Graves, 2014; Govindarajan, Sinha, & Uichanco, 2018; Mahar & Wright,
2009). Bretthauer, Mahar, and Venakataramanan (2010) proposes a
non-linear MIP model for a two echelon problem, concerned with de-
ciding whether a location should handle both online fulfillment and
traditional sales and the necessary inventory at each location. The au-
thors illustrate, via numerical experiments, the impact of the percen-
tage of online demand and of the different costs considered (fixed costs,
holding, backorder and transportation costs) on the network design.

Returns management and network design. Network design in the pre-
sence of returns has been extensively studied in the context of reverse
logistics. Fleischmann, Beullens, Bloemhof-ruwaard, and Van
Wassenhove (2001) was among the first to study the impact of reverse
logistics on the design of a distribution network. By modeling the de-
sign problem as a MILP, the authors show that a high percentage of
returns impacts the network design considerably. Most of the papers in
the reverse logistics field focus on a production environment and se-
parate the design of the forward and reverse networks (Alumur, Nickel,

Saldanha-da Gama, & Verter, 2012; Jayaraman, Patterson, & Rolland,
2003; Min, Ko, & Ko, 2006). To the best of our knowledge, there are
only a few papers that discuss the design of a network that integrates
both forward and reverse logistics processes. Krikke, Bloemhof-
Ruwaard, and Van Wassenhove (2003) proposes a MILP model for de-
signing the forward and reverse logistics network for a refrigerator
manufacturer. A multiperiod MILP model that combines strategic de-
cisions (forward and reverse network design) and tactical decisions
(production, distribution, storage) is proposed in Salema, Póvoa, and
Novais (2009). Guerrero-Lorente, Ponce-Cueto, and Blanco (2017), in-
troduces a simple general MILP model for a distribution network of a
retailer with fulfillment facilities, return facilities and product/returns
exchange points to deliver online orders or pick up returns. However,
this model does not include the last mile deliveries, which are usually
handled by a parcel carrier. Several papers address the issue of network
design when demand and returns are uncertain (see among others,
Listeş & Dekker (2005), Khatami, Mahootchi, & Farahani (2015)). For a
comprehensive review of models and techniques for reverse logistics
network design we refer to Agatz, Fleischmann, and Van Nunen (2008)
and Govindan, Soleimani, and Kannan (2015). In this paper, we study
the integrated direct and reverse logistic network of a parcel carrier. In
our model, demand and returns mainly interact by sharing the capacity
of the same distribution channels. Our model is deterministic, as we
assume that average estimates of online demand for an area can be
accurately predicted, as well as the percentage of returns. The distin-
guishing feature of our model is that demand for new channels depends
on the number of channels installed and to the distance customers are
willing to walk, unlike in a production environment, where such de-
pendency does not exist.

Last mile distribution. Once the strategy for allocation of the fulfill-
ment and returns processing is decided by retailers, last mile distribu-
tion processes ensure that orders and commercial returns are shipped to
and collected from consumers.

The integration of new channels in the distribution network has
pushed couriers to redesign their network, fleet capacity and delivery
modes to cope with increasing demand for e-commerce channels. Lim,
Rabinovich, Rogers, and Lasester (2016) provide a taxonomy of last-
mile networks for omni-channel retailers, depending on the service
speed and the variety of products offered. Lim and Shiode (2011) stu-
dies the case of a 3PL with a hub and spoke network that serves an
omnichannel retailer. Via a discrete event simulation, they found that
the network is likely to evolve into a more centralized structure in the
long run if online demand via home delivery increases consistently.
Deutsch and Golany (2018) propose a MIP model for the problem of
finding the parcel lockers locations and the needed capacity in order to
minimize the network costs, comprised from the fixed set-up costs of
the lockers and the discounts given to customers for their willingness to
travel. They discuss their model for the city of Toronto.

While network design is a strategic decision, last mile delivery is an
operational one. Although strategic and operational decisions are
usually studied independent of each other, due to the high cost of last
mile deliveries, transportation costs should be accounted for when de-
signing the logistic network of a 3PL provider. The problem of si-
multaneously optimizing the costs of facilities and transportation costs
to visit facilities and customers, the so called location-routing problem,
has extensively been studied in the OR literature. Several MIP for-
mulations and heuristics have been proposed for variants of the loca-
tion- transportation problem with one or more echelons. For extensive
literature reviews on location-routing problems, we refer the reader to
Nagy and Salhi (2007), Drexl and Schneider (2015) and Prodhon and
Prins (2014).

However, in many situations, a detailed planning of the routes is not
necessary at the moment of network design. In such situations, often the
so called Continuous Approximation is used. The approximation has
been initially proposed by Newell (1971) and Newell (1973) and allows
fairly accurate estimations of the cost in homogeneous areas. The
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approximation has been later on used and improved to tackle several
problems related to location, routing and inventory. For a thorough
review of the method we refer to Ansari, Başdere, Li, Ouyang, and
Smilowitz (2018). In our paper, we will use the continuous approx-
imation proposed by Winkenbach, Kleindorfer, and Spinler (2015),
which builds on an approximation in Daganzo (1999). Winkenbach
et al. (2015) embeds this approximation in a MIP to find the optimal
network design and fleet structure for La Poste, a carrier in France.

Customer choice and facility location models From the perspective of
mathematical modelling, our paper is most related to the field of multi-
level (hierarchical) facility location problems. According to the classi-
fication in Farahani, Hekmatfar, Fahimnia, and Kazemzadeh (2014),
our model is a variant of a fixed cost, multi-flow, capacitated, de-
terministic facility location problem. We refer to Farahani et al. (2014)
and Şahin and Süral (2007) for a very comprehensive overview of this
type of models and solution methods. The literature on incorporating
customer choice in facility location and last mile delivery is quite
scarce. So far, the main focus of literature has been on the choice of
delivery time slots and how pricing can be used as an incentive for
designing more efficient routes (Asdemir, Jacob, & Krishnan, 2009;
Campbell & Savelsbergh, 2006; Yang, Strauss, Currie, & Eglese, 2016).
To the best of our knowledge, the dependence between the number of
channels installed and demand has not been studied before in hier-
archical facility locations.

Contribution to the literature. This paper describes a MIP model for
the network design problem of a parcel carrier serving omnichannel
retailers, that consider both strategical decisions (opening of facilities)
and operational ones (last mile transportation costs). A distinguishing
feature of our model is the inclusion of the interaction between demand
and the number of facilities installed; the more new delivery channels
are in an area, the higher the demand for delivery through that channel.
We also incorporate a detailed last mile transportation costs function,
that is approximated via a piecewise linear function. For a specific case,
we propose a fast MIP heuristic, that in our scenarios gives solutions
within 1% of the optimum and is much faster than the MIP model.
Finally, we use the model to discuss the network design problem of a
parcel carrier that serves online orders and the associated returns in the
city of Madrid. Extensive numerical results study the impact of the
problem’s parameters and the quality of the heuristic.

3. Problem description

3.1. Physical flow of products in omnichannel retail

On the websites of omnichannel retailers, several delivery options
are offered for both purchase orders and commercial returns manage-
ment. Consumers make a choice depending on urgency, location to pick
up or drop off the goods and transportation fees.

Online orders are prepared for shipment at order fulfillment facil-
ities, such as: distribution centers, that combine store replenishment tasks
with online orders fulfillment; fulfillment centers which are dedicated
warehouses for online orders fulfillment, stores, that allow traditional
purchases and a limited capacity to prepare online orders.

Orders prepared in distribution and fulfillment centers are picked
up by a carrier to be delivered to a City Distribution Center (CDC), a
facility where orders are sorted and consolidated by destination. The
typical delivery network of carriers consist of different channels: ex-
isting traditional channels such as postal or parcel offices, and new
channels, such as automated parcel stations (APS), small convenience
stores and home delivery. Traditional channels usually have large ca-
pacity to hold goods, facilitating direct delivery with full trucks from
the CDC. However, more convenient locations and flexibility with re-
spect to delivery and drop off times make the new channels increasingly
popular. Distribution to new channels, which have smaller capacity,
require satellite intermediate depots (ID) where goods that travel from
the CDC are deconsolidated and sorted by delivery area. Most of these

intermediate depots already exist to manage home delivery orders.
In order to save distribution time, brick and mortar retailers may

choose to fulfill urgent online orders (with a lead time of two or three
hours) from the nearest store. It is customary that urgent orders are
picked up and delivered by the same vehicles that travel between ID
and customers. Moreover, most customers choose the same distribution
channels for both deliveries and returns. Commercial returns collected
by the carrier are sent to the retailer’s facility where the orders were
initially prepared.

To remain competitive, carriers need to determine the right network
configuration and mix of distribution channels so that demand is sa-
tisfied while minimizing the overall costs. Carriers who fail to do so
might face competition from retailers who choose a competitor or set
up their own delivery network when economies of scale for deliveries
are reached.

3.2. Problem description

In this paper we address the problem faced by a parcel carrier that
wishes to redesign its distribution network and to incorporate a di-
versified set of options for order delivery and pick up of returns.

The parcel carrier has a network of existing channels through which
parcels are delivered to a certain region. Each existing channel covers a
certain demand area, for example an area identified by a certain postal
code. In the case of a parcel carrier, an existing channel is the post office
in the area. Without loss of generality, the delivery region is divided in
L smaller areas, each corresponding to the service area of an existing
channel.

The carrier wishes to extend its services to deliver items for omni-
channels retailers. As such, it is interested in opening in each area new
delivery and returns channels (APSs, delivery through existing stores or
kiosks, home delivery) to offer more flexibility to customers. To support
these new operations, the carrier has to open new central distribution
centers (CDCs) and intermediary depots (IDs).

A schematic representation of the network is given in Fig. 1.
Customers in an area may place two types of orders: regular and

urgent orders.
Regular orders follow two routes: they can be delivered directly from

city distribution centers (CDCs) to the existing channels, or they can be
delivered to the new channels via intermediary depots, where orders
are transferred to smaller vehicles for deliveries in the demand areas.
Regular orders may be rejected, case in which a penalty is payed. The
returns of regular orders follow the two paths described above in re-
verse.

Urgent orders are picked and packed at the stores and delivered to
new channels by the same vehicles that transport items between the IDs
and the new channels. As urgent deliveries are more expensive, we
assume that they have priority above regular orders, and therefore
cannot be rejected by the carrier.

When (re)designing its logistics network, a carrier needs to decide
the location of IDs and CDCs, as well as the capacity that needs to be
installed in new channels, such that total costs are minimized. The costs
that need to be accounted for are: the fixed costs for facilities, the

Fig. 1. Conceptual framework for an omnichannel distribution network.
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transportation costs, the processing costs of the orders and returns and
the penalty costs for undelivered items or unprocessed returns. When
planning an adequate network, the carrier needs to consider customer
preferences for a certain channel, as well as the maximum distance a
customer is willing to walk to pick/up or return an item. At the same
time, the carrier has to take into account the physical restrictions im-
posed by the present facilities, such as processing capacity.

In our modelling approach, we made a few assumptions that are
listed below.

Assumption regarding demand modelling
As noted in empirical research, location and convenience of use play

an important role in the adoption of new channels (see de Oliveira
et al., 2017; Iwan et al., 2016). Hence, the more new channels custo-
mers see or are exposed to in an area, the more they will be tempted to
make use of them. As the number of channels installed is a variable in
our model, one cannot estimate in advance the demand for a certain
channel. In this paper, we propose to model this relationship via a
linear regression. Below we give the exact assumptions we make re-
garding demand.

A1. In each demand area l, demand follows a homogeneous spatial
Poisson distribution, with demand density l per unit area

A2. For each new channel, the carrier can estimate the maximum
distance WDnc,l customers in demand region l are willing to walk to
reach the channel.

A3. A location where new channels are installed, can serve an area
of =Area WDnc l nc l, ,

2 , hence a maximum demand of Areal nc l, .
A4. Demand for a new channel depends linearly on the number of

channels installed in an area and the carrier is capable of estimating the
coefficients of this linear relationship, for example, by using a linear
regression.

A5. The returns via existing or new channels are a known percen-
tage of the demand.

A6. A vehicle serves one region only; there is no routing problem
between demand regions, only inside a region.

Assumptions regarding new channels
Without loss of generality, we divide the new channels in 3 groups:

the first group, called PH, such as stores and kiosks, for which one fa-
cility can be installed at each location; second, home deliveries, that do
not need any facilities; finally, the third group, such as APSs, for which
several facilities can be installed at one location. For the easiness of the
presentation, we will assume that the third channel type is formed by
one class, APS. The exact assumptions regarding the new channels are
enumerated below.

A7. More APSs can be installed at one location. For all the other new
channels, one facility can be installed at one location

A8. The number of locations where APSs are installed should not
exceed the maximal number imposed by the distance customers are
willing to walk. To capture this aspect, we assume that each region l is
covered by Area

Area
l

APS l,
circles, where Areal is the area of region l L. This

gives a maximum of area
Area

l
APS l,

APS locations.
A9. The carrier is more interested in the capacity in new channels

needed to be installed in an area, then the exact location of the chan-
nels. For calculating the transportation costs, we assume that the lo-
cations of the new channels are uniformly distributed in the area.

A10. The carrier wants to encourage the use of new channels, hence
she offers a discount for each item delivered through a new channel.
Clearly, if the carrier is insensitive to the channel choice, the discount
will be zero.

Assumptions regarding CDCs, IDs and existing channels
A11. As the carrier already posses the existing channels, she imposes

a minimum volume that has to be direct through it.
A12. Possible locations for CDCs and IDs have been previously

identified.
Assumptions regarding the network
A13. Each demand area is assigned to at most one ID and at most

one CDC. Each of these facilities process the deliveries as well as the
returns from an area. We assume that for each demand area, there exists
at least one ID or CDC capable to handle the demand of that area.

A14. Each open ID is assigned to at most one CDC. All the deliveries
and returns to/from the ID are processed by the same CDC.

4. Mathematical model

In this section we propose a nonlinear mixed integer program (MIP)
to address the problem described in Section 3. We will refer to this MIP
as MIP-OLN. We first introduce the notation and variables used, give
the MIP and then discuss several modelling aspects.

Index sets

I: potential locations for CDCs (indexed by i)
K: potential locations for intermediary depots (indexed by k)
L: demand regions (indexed by l)
EC: set of existing channels (parcel offices)
PH: set of new channels for which one facility can be opened at each
location
APS: set of new channels, for which more facilities can be opened at
one location
NC: set of new channel types PH APS home{ } indexed by nc
C: set of distribution channels, =C NC EC

Parameters Transportation costs

tca b, - transportation costs for deliveries between a and b
tcb a, - transportation costs for returns between b and a

Asset costs

fu - fixed cost for opening facility u, where u I K
fc l, - fixed costs for opening distribution channel c in area
l c C l L, ,

Capacities and facility bounds

capu - capacity of facility u u I K,
capl c, - capacity of channel c in area l
enc l, - upperbound on the number of new channels that can be built
in area l

Parameters related to demand and returns

dl: demand of regular orders in area l
d d( )l

urg
l
urg : demand (returns) of urgent orders in area l (orders de-

livered from store)
l: percentage of demand in area l that is returned

LBl: minimum volume of demand and returns that has to be directed
through existing channels
Areanc - area served by a new channel, calculated based on the
distance a customer is willing to walk, nc NC

l - demand density per area unit in region l

Parameters related to processing orders

pa - cost for processing an order in location a, where a C K I

Penalty costs and discounts

pen - penalty cost for an unsatisfied order
vnc - discount per order/return for using channel nc NC

Decision variables
Variables related to opening facilities/capacity offered in new channels
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i: indicator variable taking value 1 if CDC i is open
k: indicator variable taking value 1 if ID k is open

c l( , )nr : number of locations where the new channel c is installed in
area l c NC home, { }

l
vol: number of APS installed in demand area l

Assignment variables

l k, : indicator variable taking value 1 if demand area l is assigned to
the intermediate depot k for delivery

k i, : indicator variable taking value 1 if intermediate depot k is as-
signed to CDC i

l i, : indicator variable taking value 1 if area l is assigned to CDC i

Variables related to deliveries

xi k, : units sent from the CDC i to intermediate depot k K
yi l, : units sent from CDC i to area l
zk l, : units delivered from processing facility k to demand area l L
wnc l, : units delivered in area l via distribution channel nc NC

Variables related to returns

xk i, : units sent from the intermediate depot k K to CDC i
yl i, : units returned from area l to CDC i
wl nc, : flow of returned units picked up from customers in group l L
via channel nc NC
zl k, : flow of items returned from demand area l L to intermediate
depot k K

Variables related to unsatisfied demand and returns

uc l, : unsatisfied regular demand in area l that had to be delivered via
channel c C
ul c, : unsatisfied returns via new channel c C from demand area l

We will next discuss the objective function of the model.

4.1. Objective function

Fixed cost of facility operations

+ + +f f f f
i I i i k K k k c PH l L c l c l

nr
l L APS l l

vol
, , , ,

Processing costs at CDC and ID

+ + + +p y y x x[ ( ) ( )]
i I l L i i l l i k K i k k i, , , ,

Processing costs at existing and new channels

+ + + +p w w p y y( ) ( )
l L nc NC nc nc l l nc l L i I ec EC ec i l l i, , , , , , ,

Penalty costs and channel discounts

+ + +pen u u v w w( ) ( )
c C l L c l l c nc NC l L nc nc l l nc, , , , , ,

Transportation costs between CDCs and IDs

+ +tc x tc x[ ]
i I k K i k i k k i k i, , , , ,

Transportation costs from IDs/CDC to demand areas

+ + + +tc z tc z tc y tc y( ) ( )
k K l L k l k l l k l k i I l L i l i l l i l i, , , , , , , , , ,

Transportation costs inside area l, independent on the nr. of
stops

+ +tc w w( )
l L l

in
nc NC nc l nc NC l nc, ,

Transportation costs inside area l, related to the number of

stops

tc n[ ].l
st

l stops,

The objective of the carrier is to minimize the total costs, that in-
clude the fixed costs for CDCs, intermediate depots and the installed
channels, proccessing costs of direct orders and returns, penalty costs
associated to rejected deliveries or returns and the discount costs of-
fered for using certain channels and transportation costs related to the
direct flows of products and to the flows of returns.

Note that for the fixed costs of new channels, we distinguish be-
tween the costs of channels in PH (stores and kiosks) and costs for APSs,
as more APSs can be installed at one location. At the CDCs, processing
costs are incurred for all items delivered via existing channels, without
transshipment and for the items transshipped via intermediary depots.
At IDs and new channels, processing costs are incurred only for the
direct and reverse flows of items delivered through the respective
channels. Penalty costs are incurred for all the unfulfilled direct orders
and returns, while discounts are given only for the use of new channels
(see assumption A10).

The transportation costs are calculated following Winkenbach et al.
(2015). We mention here only the main assumptions, an in depth dis-
cussion of the transportation costs can be found in Section 6. The costs
incurred for transporting items from an ID to the delivery point are
divided in two parts: one part accounting for transportation from ID to
region l, and the transportation costs inside region l, where the vehicle
makes a tour visiting the new channels. For all the deliveries with a line
haul trip, where the vehicle does not stop between origin and desti-
nation, the transportation costs are linear in the number of orders de-
livered/returned. This is the case for the transportation costs between
CDCs and IDs, CDCs and demand regions and IDs and demand regions.

To estimate the transportation costs inside area l exactly, one would
need to solve a vehicle routing problem between the locations where
new channels are installed and between the locations where home de-
liveries are required. Even if the location of the home deliveries were
known, the resulting problem is a large instance of a location-routing
problem, which is hard to solve. An alternative for using heuristics to
solve large location-routing problems, is to use the Continuous
Approximation (CA) proposed in Newell (1971) and Newell (1973). The
CA has been used to approximate several variants of vehicle routing
problems, such as traveling salesman problem (TSP) Daganzo (1984),
multi-echelon distribution with intermediate consolidation and trans-
shipment facilities (Daganzo, 1988) or has been incorporated in facility
location problems, such as in (Cachon, 2014). The approximation is
known to work well for routing problems with a large density of lo-
cations that need to be visited (Ansari et al., 2018). A review of the
development and applications of CA can be found in Ansari et al.
(2018). In this paper we adopt the continuous approximation of
transportation costs in a demand area proposed in Winkenbach et al.
(2015). The approximation is based on the method proposed by Da-
ganzo in Daganzo (1999) (see Chapter 4).

The main idea is to estimate a demand area Areal by n dl stops,
2, where

nl stops, represents the number of stops in area l and d is the expected
distance between 2 stops, assuming locations are uniformly distributed
in the area. As such, the distance between 2 stops is approximated by

Area
n

l
l stops,

. This approximation works well when the number of stops is

large, which is the case for omni-channel retailers. The total cost related
to transportation between stops is thus equal to

t tc Area nl v l l stops, (1)

where tcv represent the costs per time unit for operating a vehicle and tl
represents the estimated time needed to travel between two consecutive
stops. For new channels nc NC home{ }, there is one stop at each fa-
cility installed, hence there are nc NC home nc l

nr
{ } , stops. For home de-

liveries and returns, there is a stop for each corresponding order/return,
hence there will be +w whome l l home, , stops. This gives
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= + +n w w ,l stops nc NC nc l
nr

home l l home, , , , (2)

The quality of this approximation is assessed in Winkenbach et al.
(2015), where the results of the approximation are compared to the
results of the Tabu Search procedure proposed in Côté and Potvin
(2009). The authors show that for large number of deliveries (above 40
per 1 km2), the continuous approximation deviates from the Tabu
Search by less than 5%. Note that in case of an omnichannel retailer,
this amount of deliveries is easily achieved. A disadvantage of the ap-
proximation is that the function obtained contains the square root of
the number of stops, which is a decision variable in our model. How-
ever, the square root function is a concave function, and can be well
approximated via a piecewise linear function, a standard procedure in
convex/concave optimization. For a detailed description on how one
can model piecewise linear objectives via liniar programming we refer
to Hillier and Lieberman (1995) and Taha (2007). Details on the im-
plementation of the approximation can be found in Section 6.

Additional to the costs to travel between stops, there are operational
costs related to a stop, topstop.

Thus, the total costs related to the nr. of stops in a demand area l are
estimated by

= +n t n t tc Area ntc ( ) ,l
st

l stops l stops l v l l stops, op stop , , (3)

Finally, we omit the costs of transporting the urgent items between
stores and demand areas from the objective function, as we assume that
all the urgent orders need to be satisfied and are delivered by the same
vehicles that transport items from IDs to the demand area.

4.2. Constraints

Constraints related to demand/returns satisfaction and channel choice

+ + + = +y w u u d d l L,
i I i l nc NC nc l nc NC nc l ec l l l

urg
, , , ,

(4)

+w u m nc PH l L, ,nc l nc l nc nc l
nr

, , , (5)

+w u m nc APS l L, ,nc l nc l nc l
vol

, , (6)

+w u Area nc NC home l L, { },nc l nc l l nc nc l
nr

, , , (7)

+ =w u w l L~ ~ ,l nc l nc l nc l, , , (8)

+ =y u y l L i I~ ~ , ,l i l ec l i l, , , (9)

Constraints (4) ensure that the flow of satisfied and unsatisfied de-
mand (from CDC or via new channels) equals the total demand in area l.
Constraints (5) and (6) model the assumption that the more new
channels people see, the more they will be tempted to use them (see
assumption A4).

Constraints (7) imposes that the maximum demand served by one
new channel (except the home delivery) is equal to Areal nc l, , where l
is the demand density in region l and =Area WDnc l nc l, ,

2 is the area
served by the new channel (see assumptions A1-A3). Note that this
demand model is obtained when the demand in region l is assumed to
follow a spatial Poisson process with density l. In this case, the right
hand side represents the total demand in the service areas around the
new installed channels.

Constraints (8) and (9) and impose that returns to CDCs and to new
channels are a percentage of the direct demand delivered through the
respective channel (see assumption A5).

Assignment constraints

l L1
k K l k, (10)

l L1
i I l i, (11)

l L k K,l k k, (12)

l L i I,l i i, (13)

i I k K,k i i, (14)

= k K
i I k i k, (15)

+ +z z d l L k K~ (1 ) , ,k l l k l l l k, , , (16)

Constraints (10) and (11) ensure that a demand area l L can only be
served from at most one intermediate depot k K (see assumption
A13) and at most one CDC. Constraints (12) and 13 ensure that a de-
mand region can be assigned only to an open ID and CDC respectively.

Further, constraints (14) impose that if ID k is assigned to CDC i,
CDC i has to be opened. Constraints (15) ensure that each open ID has
to be assigned to one CDC (see assumption A14).

Constraints (16) ensure that orders can be transported between area
l and intermediary depot k only if l was assigned to k. In the same time,
as each area is assigned to only one depot, it imposes that both de-
liveries and returns in an area should be done through the same ID
(assumption A13).

Capacity constraints

+ + +x x y y cap i I( ~ ) ( ~ ) ,
k K i k k i l L i l l i i i, , , , (17)

+x x cap k K i I~ , ,i k k i k k i, , , (18)

+y y cap i I l L ec EC~ , , ,i l l i l ec l i, , , , (19)

+w w cap nc NC APS l L~ , { },nc l l nc nc l nc l
nr

, , , , (20)

+w w cap l L~ ,APS l l APS APS l l
vol

, , , (21)

Constraints (17)–(21) enforce that the total flow through each open
facility or new channel does not exceed its processing capacity. Observe
that for APSs the volume installed at each location is considered. Fi-
nally, constraints (18) ensure that orders can be transported from ID k
to CDC i only if k is assigned to i. This constraint also imposes that
deliveries and returns to/from an ID are processed at the same CDC
(assumption A14).

Flow Constraints

=x z k K,
i I i k l L k l, , (22)

=x z k K~ ~ ,
i I k i l L l k, , (23)

= +w z d l L,
nc NC nc l k K k l l

urg
, , (24)

= +w z d l L~ ~ ~ ,
nc NC l nc k K l k l

urg
, , (25)

Constraints (22) and (23) are the flow conservation constraint for in-
termediate depots, while constraints (24) are flow conservation con-
straints for deliveries through existing channels in a demand area l (the
flow of direct deliveries from CDC to area l is equal to the flow of items
delivered through existing channels in area l). Constraints (25) have a
similar interpretation for returns. Constraints (24) and (25) take care
that the flow of orders/returns delivered (picked up) through new
channels is equal to the flow of orders/returns transported between an
ID and a demand area plus the urgent orders (returns). Note that the
urgent deliveries are included in the variables wc l, and the returns re-
lated to urgent deliveries are included in wl c, . Thus, they must be sa-
tisfied and are considered as occupying capacity in the new and existing
channels through (20) and (21).

Bounds on variables

e nc NC l L, ,nc l
nr

nc l, , (26)

l L,APS l
nr

l
vol

, (27)
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d
Area

l L,APS l
nr l

APS l
,

, (28)

+y y LB l L( ~ ) ,
i CDC i l l i l, , (29)

x y z w u i I k K nc c C l L, , , , , 0, , , NC, ,i k i l k l nc l c l nc l, , , , , ,

(30)

x y z w u i I k K nc NC c C l L~ , ~ , ~ , ~ , ~ 0, , , , ,k i l i l k l nc l c, , , , , (31)

i I k K l L, , , , {0, 1}, , ,i k k i i l l k, , , (32)

+ c NC l LZ, , ,c l
nr

l
vol

, (33)

Constraints (26) give an upperbound on the number of new channels
that can be built in area l, while constraint (27) ensures that the number
of locations where APSs are opened cannot exceed the number of APSs
installed. Recall that by assumption (A7), more APSs can be installed at
one location. Constraints (28) limit the number of locations where APSs
can be installed, based on the maximum area an APS can serve (see
assumption (A8)). Constraints (29) ensure that a minimum flow of or-
ders is sent through existing channels (see also assumption (A11)). This
constraint is necessary as the carriers are usually interested in main-
taining the existing channels operational. Constraints (30)–(33) ensure
that variables are positive or integer.

The final MIP-OLN model minimizes the objective function de-
scribed in (4.1) subject to constraints (4)–(33).

Remarks on the model

1. Note that if >w dnc l nc l l
urg

, , , or, equivalently, if there are regular
orders to be delivered via new channels, >z 0k k l, by constraint
(24). Constraint (12) then ensures that there should be an open ID.

2. Constraints (16) and (10) ensure that both direct deliveries and
returns from an area are processed by the same ID. Note that a si-
milar condition is imposed for the deliveries/returns through a CDC,
by constraints (19) and (11).

3. Assuming one predicts the demand based on a regression model, one
would expect an equality sign in constraints (5) and (6). However, if
an equality sign was used when demand exceeds capacity, a too
large number of facilities will be opened.

4. The model assumes the same percentage of returns in all the area.
Clearly, different percentages can be accommodated by making the
parameter dependent on l. Moreover, the model assumes that
demand and returns are expected values, hence can be fractional. If
this is not desired, the percentage of returns should be area de-
pendent and defined as r d/l l , where dl and rl are the rounded va-
lues of demand and returns.

5. MIP-based heuristic

In many cases, the processing costs at different CDCs or different IDs
is the same. In these situations, the processing costs play an important
role in the choice of whether a product is delivered through an existing
or through an intermediary channel, but not in the choice of the specific
ID or CDC. In the same way, transportation between echelons is usually
done with the same type of vehicle. Hence, transportation costs that are
related to the vehicle usage and not to distance, are independent on the
exact location of facilities. Also, observe that, outside a demand region
l, the information on which new channel will be used to deliver an order
is irrelevant, as all the new channels in a region share the same delivery
path (CDC and ID). This justifies analyzing the problem at hand under
the following assumptions:

A15. The processing costs at all CDCs are equal to prCDC
A16. The processing costs at all IDs are equal to prID
A17. Same type of vehicle is used for transportation between fa-

cilities of same type (the types are CDCs IDs, , existing channel and new
channel).

Before describing the heuristic in detail, we will discuss the con-
sequence of the assumptions (A15)–(A17) on the optimization. Based
on (22) and (24) we conclude that

= =x z w d
k K i I i k k K l L k l l L nc NC nc l l L l

urg
, , , , , , (34)

A similar relationship can be written for the returns. Hence, under as-
sumptions (A15) and (A16), the processing costs can be rewritten as

= + + +
+ + +

PR pr pr w w d r
p w w p y y

( )( ( ) )
( ) ( ).

CDC ID l L nc NC nc l l nc l
urg

l
urg

l L nc NC nc nc l l nc ec i I l L i l l i

, , ,

, , , , , ,

Notice further that for each l L, the whole flow yi l, will be delivered
from a single CDC, and as processing costs are equal at all CDCs, it is not
essential which CDC is chosen in the calculation of the processing costs.
Furthermore, notice that the processing costs can be written as

=PR PRl L l, where

= + + +
+ + +

PR pr pr w w d r
p w w p y y

( )( ( ) )
( ) ( ).

l CDC ID nc NC nc l l nc l
urg

l
urg

nc NC nc nc l l nc ec l l

, ,

, ,

where yl and yl represent the orders and returns through the existing
channel.

For the heuristic, it is also convenient to split the transportation
costs between any origin and destination into costs independent on the
travel time and dependent only on the vehicle used, and costs that
depend on the travel time (see Section 6 for more details). More pre-
cisely, assumption (A17) translates into following costs structure:

= +tc tc tc t( )i k CDC ID i k, , , , for i CDC k K,
= +tc tc tc t( )i l CDC L i l, , , , for i CDC l L,
= +tc tc tc t( )k l ID L k l, , , , for k K l L,
=tc tc veh l L( ),l

in
in

where tcA B, are the time independent costs between the echelons A
and B and ta b, indicates the time needed to travel between locations
a A and b B. As before, we will denote the costs related to returns
between a and b by tca b, . Note that assuming a cost component that
depends only on the echelons and not on the exact origin-destination is
not restrictive, as many companies use the same vehicle type between
any points in two different echelons. Based on (34) and the similar
relationship for returns, the time independent component of the
transportation costs can be written as =TR TRl l, where

= +
+ +
+ + + +

TR tc tc w d
tc tc w r

tc w w tc y tc y

( )( ( )
(~ ~ )( ~ )

( ~ ) ~ ~.

l CDC ID ID L nc NC nc l l
urg

ID CDC L ID nc NC l nc l
urg

l
in

nc NC nc l l nc CDC L l L CDC l

, , ,

, , ,

, , , ,

The fact that both the processing and transportation costs have an
important component that is only related to the delivery area, suggests
that under assumptions (A14)–(A16), one could find a good approx-
imation of the flow through existing and new channels by solving a
separate optimization for each area. The main reason why this de-
composition is successful is that, with the exception of the distance
related travel costs, most of costs in other echelons can be taken into
account. This will be done in the first phase of the optimization. Once
the flow through existing and new channels in each area is estimated, in
Phase 2 we formulate another global optimization, for deciding the
CDCs and IDs to open. Note that in taking this decision, the exact flow
through each particular new channel, or the exact location of the new
channels in demand regions is not important. As the travel inside a
particular area is not taken into account, this optimization is also much
faster than the original one. Finally, in the third phase, we resolve the
optimization in each area, to decide the capacity in new channels that
needs to be installed, based on the assignment of areas to CDCs and IDs
and the flows decided in Phase 2.

Next we describe in detail each phase.
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5.1. Heuristic Phase 1

For each region l, we solve a separate MIP. All the variables have the
same interpretation as in Section 4except of yl and yl, which represent
the flow of direct delivery and returns through existing channels.

Objective function Phase 1

+ + +
+ + + + +
+ +

f f PR TR
w w pen u u

v w w
tc ( ~ ) ( ~ )

( ~ )

c PH l L c l c l
nr

APS l l
vol

l l

st nc nc l
nr

home l l home c C c l l c

nc nc nc l l nc

, , , ,

NC , , , , ,

NC , ,

The first two terms of the objective represent the costs for opening/
installing new channels, the third represents the processing costs re-
lated to the demand in region l, the fourth term the transportation costs
related to vehicle usage, the fifth represents the transportation costs
inside area l and the last two terms represent the penalty costs for
unsatisfied demand and the discounts for using new channels, respec-
tively.

Constraints Phase 1
Constraints related to demand satisfaction and channel choice

+ + + = +
Constraints

y w u u d d
(5)–(9)

,l nc NC nc l nc NC nc l ec l l l
urg

, , , (35)

w d
nc NC nc l l

urg
, (36)

w d
nc NC l nc l

urg
, (37)

Capacity constraints

+y y cap
Constraints (20)–(21)

~
l l l ec, (38)

Bounds on the number of channels

+
Constraints

y y LB
(26)–(28)

~
l l l (39)

Bounds on variables

w u w u nc NC c C, , , ~ , ~ , 0, ,nc l c l nc l l nc l c l
vol

, , , , , (40)

+ c NCZ ,c l
nr
, (41)

Constraint (35) ensure that the demand in area l is satisfied, while
constraints (36) and (37) ensure that the urgent direct deliveries and
the corresponding returns are satisfied. Observe that in the mathema-
tical program in Section 4, these two constraints were not necessary, as
they are a consequence of constraints (24) and (25). However, they are
needed here, to ensure that urgent deliveries and the corresponding
returns are fulfilled.

Constraints (20) and (21) ensure that the flow through new chan-
nels does not exceed the installed capacity, while constraint (38) in-
sures that the capacity of the existing channel is not exceeded.

Constraints (39) impose a lower bound on the flow through existing
channels, to ensure efficiency of these channels. Constraints (40)and
(41) are the positivity and integrality constraints imposed on the vari-
ables.

The output of Phase 1 consists, for each region l, in a division of
demand into demand that is satisfied through existing channels,

=d yl
EC

l and demand that has to be satisfied through new channels,
=d w dl

NC
nc nc l l

urg
, .

5.2. Heuristic Phase 2

In this phase, the heuristic decides the CDCs and IDs to be opened
such that, dl L l

EC and dl L l
NC are satisfied at minimal cost. We will

allow the program to reject demand if it is more profitable to pay pe-
nalties than open new IDs or CDC. The MIP program solved in this stage

is described in detail below.
The following new variables will be used:

wl
NC: direct flow to be satisfied through new channels in region l

wl
NC: returns to be satisfied through new channels in region l

ul
NC: unsatisfied demand through new channels in region l

ul
NC unsatisfied returns through new channels in region l

All the other parameters and variables have the same interpretation as
in the MIP in Section 4. In particular, yi l, and yl i, represent the direct
flow through the existing channel in region l satisfied from CDC i and
the returns flow from the existing channel in region l to CDC i.

Objective function Phase 2
Fixed cost of facility operations

+ +f f
i I i i k K k k

Processing costs at CDCs and IDs

+ + + + +p y y p p x x[ ( )] ( ) ( )]CDC i I l L i l l i CDC ID k K i k k i, , , ,

Processing costs at existing and new channels

+ + + +p w w p y y( ) ( )
l L nc l

NC
l
NC

l L i I ec i l l i, , ,

Penalty costs and channel discounts

+ + +pen u u u u( )
l L l

NC
l
NC

ec l l ec, ,

Transportation costs between echelons

+ + +

+ + +

tc x tc x tc z tc z

tc y tc y

[ ] ( )

( )
i I k K i k i k k i k i k K l L k l k l l k l k

i I l L i l i l l i l i

, , , , , , , , , ,

, , , , ,

Transportation costs inside area l, independent on the nr. of
stops

+tc w w( ),
l L l

in
l
NC

l
NC

Constraints Phase 2

+ =w u d l L
Demand satisfaction and returns

,l
NC

l
NC

l
NC (42)

+ =y u d l L,
i I i l ec l l

EC
, , (43)

+ =w u w l L~ ~ ,l
NC

l
NC

l l
NC (44)

+ =y u y l L i I~ ~ ,l i l ec l i l, , , (45)

=

Constraints

Constraints

Constraints
w z l L

Assignment constraints
(10)–(16)

Capacity constraints
(17)–(19)

Flow conservation constraints
(22)–(23)

,l
NC

k K k l, (46)

=w z l L~ ~ ,l
NC

k K l k, (47)

Constraints (42) and (43) ensure that, in each region, the flow through
new channels and existing channels equals dl

NC and dl
EC respectively.

Constraints (44) and (45) define the returns as percentage of direct
demand. Assignment constraints (10)–(16) ensure that demand in each
area is either served through existing channels directly from CDC or via
an ID and that each open ID is assigned to one CDC. As in MIP-OLN,
constraints (16) and (10) ensure that deliveries and returns to/from an
area l are processed by the same ID. Constraints (17)–(19) ensure that
capacity at CDC, ID and the existing channel is not exceeded, while
constraints (11) and (19) impose that the direct orders and returns
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through existing channels are processed at the same CDC. Constraints
(22) and (23) are flow conservation constraints for direct flow and re-
turns at IDs. Finally, constraints (46) and (47) ensure that the flow of
satisfied orders and returns at area level is transported to IDs.

The output of Phase 2 consists in a set of open IDs and CDCs and an
assignment of demand regions to IDs and CDCs, as well as an assign-
ment of open IDs to open CDC.

5.3. Heuristic Phase 3

For each l L for which an intermediary depot k exists such that
= 1k l, , let =ID l k( ) . Similarly, if there exists an i I such that = 1l i,

at the end of phase 2, denote i by CDC l( ). Finally, let CDC k( ) be the
CDC to which an open ID k is assigned. Note that for each l, if ID l( ) and
CDC l( ) exist, their uniqueness is implied by constraints (10) and (11).
The uniqueness of CDC k( ) is implied by constraints (15).

Moreover, let = = >D k l L ID l k d( ) { : ( ) and 00}l
NC for each open

ID k. If k is not open, =D k( ) . Remark that in phase 2, demand re-
gions l with dl

NC can be assigned to an ID, although they will not make
use of it as at the end of Phase 1, =d 0l

NC , that is, only urgent demand,
which does not pass through IDs, will be delivered through new
channels.

The goal of Phase 3 is to decide how many new channels to open in
each area and to redistribute the flow xCDC k k( ) , for each open ID k
through the new channels in the areas k serves, namely D k( ). Note that
this problem differs from the optimization in Phase 1 in two important
aspects: first, in Phase 1, the goal was to split demand between the
existing and the new channels, while in Phase 3 we only look at the new
channels; second, in Phase 1, the assignment of demand regions to IDs
and CDCs was not known, while in Phase 3 the algorithm can take into
account the transportation costs to the assigned IDs and CDCs.

The parameters and variables used have the same meaning as in the
original MIP. For each ID k that is opened in Phase 2, the following
optimization problem is solved.

Objective function Phase 3

+ + + +
+ + + + + +

+ +

+

+

f f PR pen u u
v w w TR tc w w

tc t tc t w d

tc t

tc t w d

( ~ )
( ~ ) ( ~ )

( ( ) ( )) )
~ ( )

~ ( )( ~ ~
)

c PH l D k c l c l
nr

APS l l
vol

l c NC c l l c

nc NC nc nc l l nc l st nc NC nc l
nr

home l l home

l D k CDC k k k l nc NC nc l l
urg

l D k k CDC k

l k nc NC nc l l
urg

, ( ) , , , , ,

, , , , ,

( ) ( ), , ,

( ) , ( )

, ,

The first part of the objective function is identical to the objective in
Phase 1. The last two sums represent the transportation costs to the
assigned IDs and CDCs. Variables that are fixed in Phase 1 or Phase 2
will have an upper-script indicating the phase when their value is fixed,
i.e., yi l,

2 indicates the value of the variable yi l, at the end of phase 2.
Constraints Phase 3

+ + + + = +
Constraints

w u y u u d d l D k

Demand and return satisfaction constraints
(5)–(8)

( ) , ( )nc NC nc l nc l CDC l l ec l ec l l l
urg

, , ( ),
2

,
2

,
1

(48)

w d
nc NC nc l l

urg
, (49)

w d
nc NC l nc l

urg
, (50)

+ + + +w w z z d r( ) ( )
l D k nc NC nc l l nc l D k kl lk l

urg
l
urg

( ), , , ( )
2 2

(51)

Constraints

Constraints
w u w u nc NC

Capacity constraints
(20)–(21)

Bounds on the number of channels
(26)–(28)

, , , ~ , ~ , 0,nc l nc l nc l l nc l nc l
vol

, , , , , (52)

+ c NCZ ,c l
nr
, (53)

Constraints (48) ensure that the total demand in each region is
covered by the flows through existing or new channels or by the flow of
unsatisfied demand. Constraints (49) and (50) ensure that the urgent
demand and corresponding returns are satisfied. Constraints (51) en-
sure that the demand and returns satisfied in the regions in D k( ) does
not exceed the total flow through k obtained in Phase 2. As before,
constraints (20) and (21) ensure that the capacity of the new channels
installed is not exceeded. The bounds on the varaibles are identical to
the bounds in the original MIP.

The output of Phase 3 consists in the number of new channels to be
opened in each area l D k( )k K and the flow through each channel
type.

At the end of the heuristic, we fix the variables in MIP-ONL to the
values obtained at the end of the phase indicated by the superscript, as
indicated below. We used a to indicate a vector.

=
Variables related to opening facilities and assignment variables:

( , , , , ) ( , , , , )2 2 2 2 2 (54)

=
Variables related to flow through existing channels

y y y y( , ~) ( , ~ )2 2 (55)

=
Variables related to capacity offered in new channels

( , ) ( , )nr vol nr 3 vol 3, , (56)

=
Variables related to deliveries through open channels

w w l D k nc NC, ( ),nc l nc l k K, ,
3 (57)

=w w l L D k nc NC, ( ( )),nc l nc l k K, ,
1 (58)

=z w d k K l D k, , ( )k l nc NC nc l l
urg

, ,
3

(59)

=

=

( )x w d k

K i CDC k

for any open

and ( )

i k l D k nc NC nc l l
urg

, ( ) ,
3

(60)

=
Variables related to returns
w w l D k nc NC~ ~ , ( ),l nc l nc k K, ,

3 (61)

=w w l L D k nc NC~ ~ , ( ( )),l nc l nc k K, ,
1 (62)

=z w d k K l D k~ ~ ~ , , ( )l k nc NC l nc l
urg

, ,
3

(63)

=

=

( )x w d k ID i

CDC k

~ ~ ~ , for any open ,

( )

k i l D k nc NC l nc l
urg

, ( ) ,
3

(64)

=
Variables related to unsatisfied demand and returns
u u l D k nc NC, ( ),nc l nc l k K, ,

3 (65)

=u u l L D k nc NC, ( ( )),nc l nc l k K, ,
1 (66)

=u u l D k nc NC~ ~ , ( ),l nc l nc k K, ,
3 (67)

=u u l L D k nc NC~ ~ , ( ( )),l nc l nc k K, ,
1 (68)

= +u u u l L,ec l ec l ec l, ,
1

,
2 (69)

= +u u u l L~ ~ ,l ec l ec l ec, ,
1

,
2 (70)

All the remaining variables are set to zero.

J. Guerrero-Lorente, et al. Computers & Industrial Engineering 144 (2020) 106433

9



Proposition The MIP-heuristic returns a feasible solution to MIP-
OLN.

Proof We will show that the vector defined by (57)–(70), denoted
farther by SOL, gives a feasible solution to MIP-OLN.

Constraints related to demand/returns satisfaction and channel choice
By constraints (48), for every l D k( )k K ,

+ + + + = +y w u u u d d( ) .CDC l l nc NC nc l nc l ec l ec l l l
urg

( ),
2

,
3

,
3

,
2

,
1

It is easy to see that SOL satisfies constraint (4) by noting that by its
definition, = = =y y w w u u, ,i l i l nc l nc l nc l nc l, ,

2
, ,

3
, ,

3 and = +u u uec l ec l ec l, ,
2

,
1 (see

(55), (57), (65), and (69)).
For l L D k( ( ))k K , constraint (35) implies

+ + + = +y w u u d d .l nc NC nc l nc NC nc l ec l l l
urg1

,
1

,
1

,
1

(71)

Constraints (43) and the definition of dl
EC imply that

+ =y u y .
i I

i l ec l l,
2

,
2 1

(72)

Combining (71) and (72), we obtain

+ + + + = +y u w u u d d .i l ec l nc NC nc l nc NC nc l ec l l l
urg

,
2

,
2

,
1

,
1

,
1

(73)

It is now easy to see that SOL also satisfies (4) for l D k( )k K , by
observing that = = =y y w w u u, ,i l i l nc l nc l nc l nc l, ,

2
, ,

1
, ,

1 and = +u u uec l ec l ec l, ,
2

,
1

by (55), (58), (66), and (69).
As wnc l, and unc l, are fixed in Phase 3 for l D k( )k K and in Phase 1

for l L D k( )k K , they satisfy constraints (5)–(8), which are im-
posed in the MIP solved in both phases. Similarly, as yl i, and ul ec, are
fixed in Phase 2, they satisfy constraint (9).

Assignment constraints
To verify the assignment constraints, there is no need to distinguish

between the regions in D k( )k K and the others, as all the regions are
included in Phase 2.

As ( , , , , ) are fixed at the end of Phase 2, it must satisfy
(10)–(15) which are imposed in this phase.

To verify (16), note that = = 0l k l k, ,
2 for any k ID l( ). For all

=l D k z( ), 0k l, and =z 0l k, , by the definition of these variables (see
(59) and (63)). As =l ID l k D k{ : ( ) } ( ), it follows that for l L and
k K such that =k ID l z( ), 0k l, and =z 0l k, and (16) is satisfied. For
l D k z d( ), k l l, , since =z w dk l nc NC nc l l

urg
, ,

3 by definition and
+w d dnc NC nc l l l

urg
,

3 by (48). Moreover, by constraints (8),
w wl nc nc l,

3
,

3 . By combining this relation with the definition of zl k, ,

+z z d r d ,l k k l l
urg

l
urg

l, ,

where we have used that =d dl
urg

l
urg. Hence, + +z z d(1 )k l l k l l k, , , .

Capacity constraints
To verify (17), for each i CDC, denote by

= =ID i k K CDC k i( ) { : ( ) } and by = =L i l L CDC l i( ) { : ( ) }. For
= =k ID i x x( ), 0ik k i, and for = =l L i y y( ), 0i l l i, , . Recall that by

(60)–(64), for each k ID i( ), we have that

+ =

+

+ +

x x w d

w r

z z x x

~ ( )

( ~ )
( ~ ) ~

i k k i l D k nc NC nc l l
urg

l D k nc NC l nc l
urg

l D k kl lk i I i k i I k i

, , ( ) ,
3

( ) ,
3

( )
2 2

,
2

,
2

(74)

where for the second inequality we used constraint (51) in Phase 3 and
for the last inequality we used constraints (22) and (23) in Phase 2.
Finally, by using (17) in Phase 2, we conclude that

+ + + + + +x x y y x x y y
cap

( ~ ) ( ~ ) ( ~ ) ( ~ )
.

k ID i i k k i l L i i l l i i I i k k i l L i i l l i

i i

( ) , , ( ) , , ,
2

,
2

( ) , ,

This implies that the constructed solution satisfies (17). Moreover, (74)
and constraints (18) imposed in Phase 2, imply that

+x x capi k k i k k i, , , . Hence, SOL also satisfies (18).
As the variables y y,i l l i, , and l i, are fixed in Phase 2, where constraint

(19) is imposed, the final solution of the heuristic also satisfies this
constraint. Similarly, constraints (20) and (21) are satisfied, as the
variables w w, ,nc l l nc nc l

nr
, , , and l

vol are fixed Phase 1 for regions
l L D k( ( ))k K and in Phase 3 for l D k( )k K , where these con-
straints are also imposed.

Flow conservation constraints
Definitions (59) and (60) combined with the fact that, for all

=l L D k z( ( )), 0k K k l, and for all k K and i I , with
=i CDC k x( ), 0i k, , imply that SOL satisfies (22). Furthermore, by

the definition of zk l, and zl k, , SOL also satisfies constraints (24) and (25)
for l D k( )k K . By the definition of D k( ) in Phase 3, =d 0l

NC , for
l L D k( ( ))k K . Equivalently, =w dnc nc l l

urg
,

1 . As
=z l L D k0 for ( ( )),k l k K, it follows that (24) is also satisfied by

l L D k( ( ))k K . Similar arguments can be used to show that SOL also
satisfies (25) for l L D k( ( ))k K .

Bounds on the variables The bounds imposed in Phase 2 and Phase 3
ensure that the vector defined by (54)–(70) satisfies (26)–(33). Note
that constraints (49) and (50) in Phase 3 ensure that the variables
z z x, ,k l l k i k, , , and xk i, are positive.

6. Case study

In this section we apply the model in Section 4, illustrated in Fig. 1,
on a case study related to a parcel carrier in Madrid, Spain. The city is
divided into 63 demand areas, each corresponding to a postal code (see
Fig. 6). The demand areas differ in demand density (defined as nr.or-
ders/km2) as shown in Fig. 2. There are 9 areas with very low demand
density (below 40 orders/km2), 16 areas with low density (between 40
and 290 orders/km2), 19 areas with medium density (between 290 and
500 orders/km2), 12 areas with high density (between 500 and 710
orders/km2) and 7 areas with high density (between 710 and 1000
orders/km2). The density of demand increases with the proximity to the
city center.

Fig. 2. Distribution of demand density.

Table 1
Main parameters related to facilities.

CDC ID Existing Channel APS Store Kiosk Home

Fixed cost/day(€) 4247 439 158 5.10 4.6 1.78 0
Processing cost/order(€) 0.12 0.05 0.11 0.11 0.11 0.11 0
Capacity (orders or returns) 8000 7000 300 20 12 7 1
Discount(€/order or €/return) 0.1 0.1 0.1 0
Penalty (€/order or €/return) 3 3 3 3 3
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In each area, there is one existing channel, namely the parcel office
corresponding to the postal code. We consider the possibility of in-
stalling 4 new channel types in each area: Automatic Parcel Station
(APS), stores, kiosks and homes.

The carrier uses trucks to pick up online orders from distribution
centers in the outskirts of Madrid (outside the ringroad). The distribu-
tion centers are the sites where retailers or their associated 3PLs fulfill
online orders. Inside CDCs, parcels are sorted and consolidated by
destination. Orders that have to be collected by consumers in the ex-
isting 63 parcel offices, are delivered directly by trucks. Orders that
have to be delivered to Automated Parcel Stations (APS), stores, kiosks
or consumers homes are sent by truck to intermediary depots (ID), in-
side the ring road of the city. Each intermediary depot covers a group of
demand areas in the city. The transportation between ID’s and demand
areas is performed by vans. Urgent orders, that require immediate de-
livery, are fulfilled in retailer’s urban stores, are picked up by the vans
that travel between the IDs and demand areas and are delivered via the
closest route. Commercial returns follow the same route in reverse di-
rection.

The carrier is interested where to open CDC’s, IDs and new channels
such that the total costs of opening facilities and transportation costs, as
given in Section 4.1 is minimized.

We next present the parameters of the basic scenario.
Parameters related to facilities in the basic scenario
All facilities of the same type are considered identical. The max-

imum number of CDCs that can be opened is 2 while the maximum
number of intermediary depots is 8. The parameters related to the fa-
cilities and new channels are given in Table 1:

For an exact description on how the facility costs were obtained, we
refer to the Appendix A. For stores and kiosks, information on the
maximum number of channels to open has been collected from each
postal area (see Appendix A). For APSs and home deliveries, the max-
imum capacity that can be opened in an area is not restricted (i.e.,

=enc l, ).
Parameters related to orders and demand in the basic scenario

The total demand is assumed to be equal to =D 75000 packages per
day. The demand in area l is calculated as Dl , where alpha is the
percentage of population of Madrid living in area l. The percentages l
were calculated based on the data regarding the population between 25
and 64 years old obtained from the Institute of Statistics of Madrid
Community (Estadistica de Población de la Comunidad de Madrid,
1996). The value used for the demand per area can be found in the
Appendix A.

Urgent demand in area l is calculated as =d d2%l
urg

l, while the
percentage returns in area l are equal to = 6.5%l of the demand. A
similar relationship holds for urgent deliveries.

For each new channel, in the basic scenario, =m cap0.935nc nc.
The distance a customer is willing to walk to a new channel was esti-
mated to be 420 m.

Parameters related to transportation costs in the basic scenario
We assume 2 type of vehicles: trucks, that transport order between

CDC-ID and vans, for the transportation between ID and demand area,
and inside demand area. The parameters related to the 2 types of ve-
hicles are given in Table 2.

Next we explain how these parameters have been used to calculate
the transportation costs.

All the transportation costs between two facilities in different
echelons can be split into a component that is independent on the time
travelled and one that depends on the time (distance) travelled between
the specific locations. We use time instead of distance to calculate costs,
due to the different speeds allowed in a city. For two echelons A and B,
where A B CDC ID L{ , } { , , }, the travel time independent component is
defined as wage costs=tc q tA B veh A B operations, ( , ) , where

average volume of an item
capacity vehicle A B=qveh A B( , ) ( , ) represents the percentage of a vehicle

used, veh A B( , ) is the vehicle used between echelons A and B and
toperations is the time needed to load/unload a vehicle.

The time(distance) dependent component between two echelons is
equal to =tc t q t tc( )a b veh trip a b v, ( , ) , where ttrip a b( , ) is the time needed
for the trip between facilities a and b and tcv is the cost per time unit
related to the vehicle used. The costs in the reverse direction are cal-
culated in the same way.

The transportation costs inside area have a component that is in-
dependent on the time travelled (in this case, on the number of stops
made) and a component that depends on the number of stops. The
transportation costs inside a region l, that are independent on the
number of stops, are equal to wage costs=tc q tl

in
veh A B operations( , ) .

The estimation of the transportation costs between stops was given
in (3). A piecewise linear approximation of this function, with segments
defined by 36 points between [0, 2300] was constructed via Gurobi. We
chose for a large interval in order to capture the function more accu-
rately – however, smaller intervals can be chosen depending on what is
found a reasonable maximum number of stops in an area. The quality of
the piecewise linear approximation is discussed in Appendix B. The
operation costs per stop were calculated as ctt wage cost=tc ncopstop ,
where cttnc represents the average time needed to reach a channel once
the van is stopped.

In calculating the time needed to travel between two points, we
extracted the speed from Google (see Appendix A).

All the MIP programs have been solved with GUROBI 8.1.1 and all
the experiments were run on an Intel Core i7-4770CPU, 3.4 GHz, 16 GB
RAM.

We will focus our analysis on the direct flows, as the most pre-
dominant flows in the network. All the flows are rounded to the nearest
integer.

Table 2
Parameters related to transportation costs.

truck (CDC-
ID)

van (ID-area l) van (inside area l)

capacity of a vehicle (m3) 16.32 8.448 8.448
toperations(min) 30 30 30
tcv (€/min) 0.60 0.446 0.446
wage costs(Euro/min) 0.2 0.2 0.2

Table 3
Total cost structure.

Costs Cost Existing channels
(€)

Costs New channels
(€)

Percentage cost existing
channels

Percentage cost new
channels

Percentage rightarrow tal
cost

Facility 18 152 16 063 24.46% 21.64% 46.10%
Processing 12 706 8 877 17.12% 11.96% 29.08%
Line haul transportation 1 057 7 351 1.42% 9.90% 11.33%
Transportation inside demad area 0 3 636 0 8.6% 4.9%
Penalty 10 83 0.01% 0.11% 0.12%
Discounts 0 6 291 0 8.47% 8.47%
Total costs 31925 42301 43% 57% 100%
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6.1. Base case analysis

The total costs in the base case scenario amounts to 74225 €/day.
Table 3 shows the distribution of the cost components in the optimal
solution. The main component of the cost is the facility costs (46% of
the total costs). As expected in an omnichannel environment, a large
part of the costs (29.08%) are due to processing orders. The transpor-
tation costs are 16.23% of the total costs, 11.33% being incurred by
long-haul transportation and 4.9% by transportation inside demand
areas. New channels, mostly APS, account for 57% of the total costs and
their total associated transportation costs are 14.8% of the total costs.

The structure of the network given by the optimal solution is given
in Table 4. All the 63 existing channels are used as much as possible, as
being the most efficient with respect to transportation costs, capacity
and facility costs. The flow through the existing channels amounts at
21.83% of the total flow. From the new channels, APSs are preferred,
due to the fact that more facilities can be installed at one location. APSs
serve the largest percentage of orders and returns, namely 76.3%. As
seen in Table 4, home deliveries account for a small percentage of the
flows of orders and returns, namely only 1%. This is due to the higher
transportation costs associated to home deliveries and the economy of
scale offered by other channels. The small number of stores (40) and
kiosks (39) used is due to small existing number of such facilities in
demand areas. These results confirm the carrier’s strategy to focus on
installing APSs in Madrid and whole Spain.

One of the main factors influencing the flow structure per channel is
the density of demand. The impact of order density on the usage of the
different channels is shown in Fig. 3. As expected, when the number of
orders per demand area is small (below 500/km2), the existing channel
is preferred. When the total number of orders exceeds the capacity of
the existing channels, other channels start being used, hereby de-
creasing the percentage of flow through the existing channel.

If the remaining demand to be delivered through other channels is
very small, home delivery is preferred, until opening other new chan-
nels becomes efficient (this is the case for demand areas with less than
500/km2). When the number of orders/demand area increases above
500/km2, the usage of APSs increases. The areas with higher number of
home deliveries (between 30% and 40%) are characterized by low
demand density. In these cases, opening new channels does not result in
economy of scale in deliveries.

6.2. Impact of problem parameters

To analyze the impact of different parameters, we have constructed
36 scenarios, by using the multiplication factors in Table 5.

Impact of changes in demand
To study the impact of demand variations, we have increased the

average number of orders in the base scenario by a multiplication
factors varying from 1 to 1.5 in steps of 0.1 (from 76,566 orders to
114,849 orders in steps of 7656 orders). For each scenario, the number
of each type of facility opened and the flow through each facility type is
given in Table 6.

As seen in Table 6, up to a demand multiplying factor of 1.2, the
flow through all new channels increases. This is to be expected, as the
existing channels are used at maximum capacity. For higher factors, the
capacity of all the IDs is reached, hence demand cannot be satisfied
anymore. Most of the demand will be served via APSs, except in regions

Table 4
Structure of the optimal solution.

Parcel
offices

Home
delivery

APS Stores Kiosks

New Facilities
installed

0 156 40 39

Orders 16711 758 58405 484 177
Returns 1086 49 3796 31 12
Total flow 17797 807 62201 515 189
Total flow (%) 21.83% 0.99% 76.31% 0.63% 0.23%

Fig. 3. Flow percentages in the basic scenario.

Table 5
Parameter variation.

Parameter Range multiplication factors Increment

Demand 1–1.5 0.1
fixed costs 1–1.5 0.1
tcv 1–1.5 0.1
WD 0.2–1.2 0.2
Speed 0.2–1 0.2
m m m m( , , , )APS stores kiosks home (0.2, 0.2, 0.2,1)

(0.2, 0.2, 0.8, 1)
(0.2, 0.8, 0.2, 1)
(0.8, 0.2, 0.2, 1)
(0.8, 0.2, 0.8, 1)
(0.8, 0.8, 0.2, 1)
(0.2, 0.8, 0.8, 1)
(0.8, 0.8, 0.8, 1)

m m m( , , )APS stores kiosks
a 1.2–1.6 0.2

a =m 1home .
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where demand is very low. For these regions, as demand is scattered,
paying the fixed costs cannot be justified by the low usage. Note that
the number of APS locations decreases for large enough demand fac-
tors, when demand equals or exceeds total capacity. The reason is that
the demand per unit area around each channel increases, hence, the
amount of demand that can be satisfied through the total ID capacity
can be delivered though a lower number of channels.

Impact of customer preferences
To illustrate the impact of customer preference for a specific

channel, we will use the combinations in the last 7 rows of Table 5. The
results are presented in Fig. 4a. The results indicate that while mAPS is
kept constant ( =m 0.2 or =m 0.8) and the other m-parameters are
varied, the solution remains relatively constant. Changing mAPS has the
largest impact on the solution. As a consequence of the increased uti-
lization, the number of APS locations decreases by 7%. Due to the
maximum walking distance imposed, the number of home deliveries
increases. For >m 1.2, which means that the demand per new channel
type actually exceeds its capacity, (recall that in the base scenario

=m cap0.935 ), the number of home deliveries increases due to in-
sufficient capacity in new channels.

Impact of speed. We have analyzed the impact of vehicle speed

(congestion) by varying the speed by a factor k ranging from 0.2 to 1, in
steps of 0.2. The results are shown in Fig. 4b. Recall that the speed
impacts only the transportation costs inside an area; the lower the
speed, the higher the transportation costs. For very low speed ( =k 0.2),
it is preferable to skip home delivery and pay penalties, as delivering
would be more costly. As the speed increases and the transportation
costs inside area decrease, the number of home deliveries increases.
Similar effects can be observed when the fixed vehicle costs are varied.

Impact of the maximum walking distance
To measure the impact of the maximum walking distance a con-

sumer is willing to walk to pick up her order, we multiplied WDnc l, in
the base scenario by a factor ranging from 0.2 to 1.2 in steps of 0.2 (this
gave a walking distance varying between 84 to 504 m in steps of 84 m).
The percentage of flow through a specific channel in different scenarios
is depicted in Fig. 4b, while the number of facilities of each type is
presented in Table 7.

Results in Fig. 4b show that in all scenarios, the flow through ex-
isting offices remains constant, around 21.84%. This is due to the fact
that for the existing offices, we did not pose a walking distance con-
straint, as these are traditional channels with which people are more
used. In our setting, due to their efficiency, they are used at maximum
capacity. The flow through stores and kiosks remain small, due to the
restrictions imposed by their availability in an area. When customers
are not willing to walk a long distance to pick up their orders, home
delivery is the most popular channel, encompassing 72.44% of the or-
ders. For walking distances over 168 m, the usage of APSs grows sig-
nificatively, with values over 60%, as lower distribution costs com-
pensate for the fixed APS costs. The longer customers are willing to
walk (above 336 m), the lower the number of locations where APSs will
be installed, despite the fact that the flow through APSs decreases only
slightly (see Fig. 5). For higher walking distances, the flow through the
APS is replaced by flow through stores, kiosks and home delivery (see
Fig. 5). Recall that in our model, demand that can be satisfied through a
channel is proportional with the distance customers are willing to walk
to that channel. For larger distances, stores and kiosks become more
efficient, as they can serve a larger demand. Between kiosks and stores,
kiosks are preferred for small distances, while for larger distances,
above 168 m, a higher percentage of the flow will go through stores.
This can be explained by the fact that in our case study, stores have
larger capacity, while the fixed costs per capacity unit is equal to the
ones for kiosks.

Impact of facility costs
We have studied the impact of facility costs, by varying them by a

factor k, ranging from 1.1 to 1.5, in steps of 0.1. In all cases, the

Table 6
Impact of demand increase on the number of facilities opened.

Demand factor Nr. APS locations Nr. stores Nr. kiosks Home deliv. Flow APS Flow stores Flow kiosks

1 356 43 27 758 58 405 484 177
1.1 367 45 45 835 65 658 507 296
1.2 388 50 57 989 73 169 563 374
1.3 390 43 25 14 80 085 483 163
1.4 309 11 2 18 80 727 117 14
1.5 283 0 1 13 81 015 0 7

Fig. 4. Impact of parameters on the optimal solution.

Table 7
Impact of walking distance on solution.

Walking dist. (m) Nr. APS locations Nr. stores Nr. kiosks Home deliv.

84 102 77 180 55 454
168 1058 43 72 12 429
252 885 27 17 1 684
336 540 23 16 652
420 356 43 27 758
504 278 62 72 1236
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percentage of flow through each channel remained the same as in
Fig. 3, while the costs increased with the increase of facility costs. This
robustness can be explained by the fact that multiplying all the facility
costs by the same factor does not change the ordering of channels w.r.t
the fixed costs/unit of capacity, which seems to be an important
characteristic in choosing for a certain type of facility. Recall that the
existing channel, which has the lowest cost/capacity unit is the most
preferred, and APS, which has the second lowest cost/capacity unit, is
the second preferred channel.

7. Quality of the heuristic

For all the scenarios in Section 6, we have compared the solution of
the heuristic with the optimal solution of the piecewise linear approx-
imation proposed in Section 4.1.

The detailed results regarding computation time and quality of the
solution can be found in Appendix C, Table 10. On the above scenarios,
the heuristic has an average relative error of 0.07%, with the highest
errors for demand factors 1.3 and 1.4 (0.96% and 1.01% respectively).
In our experiments, the relative error in all cost types but the trans-
portation costs inside demand areas (facility, processing, penalty -costs,
transportation costs CDC-demand area, transportation costs CDC-ID and
transportation costs ID-area) is less than 0.65%. For the transportation
costs inside demand areas, the relative average error is 2.92%, with the
highest differences, 46.26% and 69.23% registered for demand multi-
plication factors of 1.3 (Scenario 4) and 1.4 (Scenario 5) respectively. In
both scenarios, the difference in transportation costs is mainly caused
by differences in 2 areas: one with low demand density (Demand Area
28042 in the outskirts, with 24 orders/km2) and one with very high
demand density (Demand Area 28015 in the center of the city, with
1096 order/km2). In both areas, while the optimal solution chooses to
leave demand unsatisfied, the heuristic chooses to satisfy it already in
Phase 1. The main reason for this behaviour is that in Phase 1, the
heuristic decides the percentage of satisfied/unsatisfied demand
without knowing the exact location of the ID’s and CDC’s. As a result,
the heuristic cannot capture in all detail the trade-off between penalty
costs and the transportation costs between ID and areas. A remedy is
attempted in Phase 3, where, given the open IDs, the optimal re-
allocation of demand among channels is found. However, by fixing the
IDs, only a part of the trade-off is captured. Despite the difference in
transportation costs in these areas, the transportation costs in the other
61 areas are similar to the costs in the piecewise linear MIP. Therefore,
the impact on the total costs is small (the final cost differences are 0.96%
in Scenario 4 and 1.01% in Scenario 5).

Table 10 also shows that the on average, the heuristic and the op-
timal solution satisfy the same quantity of demand.

The computation times of both methods are given in Table 10. On
average, the heuristic was 42.5 times faster than the MIP (see Table 10).
The average time for solving the MIP formulation was 320 s, with a

minimum of 14sec. for a demand multiplication factor of 1.5, and a
maximum of 3600 s. for demand multiplication factors 1.1. and 1.3.
The heuristic spent the same time for the first case, while it solved the
other case in 16Section (355 times faster). It seems the problem is
harder to solve when the total demand is close to the total capacities of
the ID’s. For these cases, the heuristic spent most computing time in
Phase 2, indicating that the choice of CDCCs and IDs is the bottleneck.
When demand exceeds the capacity considerably (demand factor 1.5),
the problems becomes easy, as a large fraction of demand can be dis-
regarded.

These results suggest that the heuristic performs well when demand
is lower than the total available capacity. If demand is higher than total
capacity, the heuristic has higher transportation costs inside the area.
However, if these costs are a small percentage of the total costs, this
deviation does not affect the quality of the solution.

8. Conclusions and discussion

This paper proposed a MIP model for the network design problem of
a parcel carrier that manages online orders from omnichannel retailers.
The novelty of this paper is that it integrates customer preferences for
deliveries and returns, the maximum walking distance to a delivery
option and the impact of channel availability on customers’ channel
choice. We also used a detailed last mile transportation cost function,
that is approximated via a piecewise linear function. We applied the
model to the network design problem of a parcel carrier that serves
online orders and the associated returns in the city of Madrid.

The model and the results show the importance of the right posi-
tioning and dimensioning of the capacity of new channels, when con-
sumer preferences are taken into account. Our experiments brought
forward other factors that play a role in network design: demand
density, the maximum distance customers are willing to walk and speed
(congestion). The model supports the idea that APSs are suitable for
demand areas with moderate and high demand density. In areas with
low demand density and high distribution times, home deliveries are
more efficient, as installing facilities within a reasonable distance from
customers is too costly in these regions. Very high traffic congestion
(low vehicle speed) may result in the carrier refusing orders and paying
penalty costs.

The influence of the above mentioned factors has been simplified in
this model and could be further refined and improved. The demand is
assumed to be estimated by expected values, and a simple linear rela-
tion is assumed between the number/volume of new channels and de-
mand. Further research could focus on embedding more sofisticated
customer preference models into the MIP, such as discrete choice
models. Note that these models are highly non-linear and new algo-
rithms need to be developed to deal with this challenge.For a review of
some exact methods, heuristics and meta-heuristics for solving non-
linear mixed integer problems, we refer to Belotti et al. (2013) and
Gendreau and Potvin (2010). Another very interesting extension would
be to incorporate more detailed information on the demand process,
such as seasonality of demand.

For a special case, often encountered in practice, the paper also
describes a very fast MIP- based heuristic that finds solutions of good
quality. In our experiments, the heuristic gave accurate approximations
for all the costs involved (within 1%), with the exception of the situa-
tion when demand exceeds the total available capacity at intermediary
depots. In these cases, although the heuristic has a good overall per-
formance (below 1%), the transportation costs inside an area are
overestimated. Further research could focus on methods that improve
this aspect.
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Appendix A. Detailed parameter calculations

A.1. Facilities related parameters

The fixed costs per day for CDC, ID and parcel offices were calculated as Area Rent per year
Nr working days.

and for the new channels was calculated by
cap Rent per year Equipment cost

Nr working days
+

.
nc , assuming Nr. working days = 260. The values for the areas and price are given in Table 8.

A.2. Demand characteristics

A map of the demand areas can be found in Fig. 6.
The characteristics of demand areas can be found in Table 9.

Table 8
Detailed parameters related to facilities.

CDC ID Existing
Channel

APS Store Kiosk Home

Area (m2) 20000 500 180 1.43 0.86 0.5 0
Rent per year

(€/m2)
55.2 228 228 228 228 228 0

Equipment costs (€) 1000 1000 1000 0 0 0 0
Fixed cost/day (€) 4247 439 158 5.10 4.6 1.78 0
Capacity (orders or

returns)
8000 7000 300 20 12 7 1

Fig. 6. Demand Areas.
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Appendix B. Quality of the piecewise approximation

Fig. 7 shows the squareroot function and the piecewise linear approximation used in the MIP. The two functions are very close to each other, the
highest error being in the interval [0,60]. Fig. 8 presents a zoom of the functions on this region showing that the maximum error is less than 0.2.
Recall that in the cost function, x is multiplied by Area tc tl v l (see 1). In our base scenario, this factor takes an average value of 6.65, with a
maximum of 18 and minimum of 2. Assuming the worst case, in which in each demand region the approximation error of the squareroot function is
0.2, the total error in our base scenario is less then 0.2% of the optimal value.

Table 9
Parameters related to demand areas.

Code Area l dl dl
urg Nr.stores Nr.kiosks speedl Code Area l dl dl

urg Nr. stores Nr.kiosks speedl

PO28001 969 20 2 2 16.09 PO28027 2015 41 5 10 15
PO28002A 892 18 2 4 26.89 PO28029 2759 56 6 10 11.21
PO28002B 892 18 2 4 26.89 PO28030 3056 62 5 14 17.92
PO28003 1318 27 1 4 20.12 PO28031A 830 17 4 5 20.65
PO28004 947 19 3 2 12.88 PO28031B 830 17 4 4 25.37
PO28005 2041 41 6 5 17.49 PO28032A 545 11 2 4 31.64
PO28006A 281 6 2 4 16.92 PO28032B 545 11 2 4 31.64
PO28006B 281 6 2 4 12.9 PO28033 2588 52 5 4 12.33
PO28006C 281 6 1 3 16.84 PO28034A 1012 21 2 3 15.83
PO28007 2178 44 4 10 11.01 PO28034B 1012 21 1 4 13.72
PO28008A 507 11 2 2 21.83 PO28035 1824 37 6 6 14.35
PO28008B 507 11 1 2 21.83 PO28036 682 14 0 1 28.05
PO28009 1187 24 1 9 15.72 PO28037 1696 34 2 11 26.66
PO28010 1178 24 4 9 12.47 PO28038A 1560 32 2 3 41.8
PO28011A 958 20 5 3 14.4 PO28038B 1560 32 1 4 36.62
PO28011B 958 20 5 2 14.4 PO28039 2091 42 7 4 12.45
PO28012 1103 23 3 6 15.18 PO28040 288 6 2 1 21.06
PO28013 313 7 4 6 11.35 PO28041A 837 17 2 4 18.84
PO28014 569 12 1 3 20.4 PO28041B 837 17 1 4 22.59
PO28015 1677 34 7 2 14.75 PO28041C 837 17 1 5 18.31
PO28016 1039 21 1 5 22.92 PO28042A 512 11 2 2 20.37
PO28017 3103 63 6 9 24.36 PO28042B 512 11 1 3 15.31
PO28018 2929 59 5 7 20.16 PO28043A 1122 23 4 6 13.78
PO28019 2502 51 13 6 44.37 PO28043B 1122 23 3 7 17.15
PO28020 1412 29 7 6 40.3 PO28044 2156 44 7 12 48.14
PO28021 2132 43 6 6 27.88 PO28045 1676 34 5 3 48.14
PO28022A 676 14 2 3 15.19 PO28048 125 3 0 2 51.26
PO28022B 676 14 3 4 18.78 PO28049A 14 1 0 1 47.33
PO28023 459 10 0 1 16.25 PO28049B 14 1 0 1 51.06
PO28024 1880 38 2 4 35.83 PO28050 218 5 3 1 67.36
PO28025 2413 49 6 11 17.14 PO28051 15 1 0 1 64.21
PO28026 1884 38 5 8 15.57

Fig. 7. Approximation of the square root function by a piecewise linear function for up to 350 stops.
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Appendix C. Quality of the heuristic

See Table 10.

Fig. 8. Approximation of the square root function by a piecewise linear function for up to 60 stops.

Table 10
Quality of heuristic

Scen.o Factor Time MIP-OLN
(sec.)

Time
Improv.a

Total cost
differenceb

Diff. APS
loc.c

Diff.
Stores

Diff. Kiosks Diff.
Homes

Diff APS. Diff.unsat.
demand

1 D1.0 70 25.8 0.03% 0 4 −9 −4 4 3
2 D1.1 3600 1 0.07% 1 0 −18 67 7 −23
3 D1.2 619 451.9 0.04% 0 −2 −2 2 4 3
4 D1.3 3600 355.4 0.96% −1 0 8 678 −35 17
5 D1.4 124 11.3 1.01% 45 24 34 875 −71 21
6 D1.5 14 43.3 0.14% 23 12 15 9 −7 31
7 FC1.1 63 16.2 0.02% −2 1 −4 15 4 −13
8 FC1.2 121 14.3 0.01% −1 0 −3 8 3 −5
9 FC1.3 71 21.1 0.02% 0 −6 −3 −5 9 1
10 FC1.4 112 19.7 0.00% 0 −5 −2 0 7 1
11 FC1.5 105 9.6 −0.01% −1 3 −15 −1 7 2
12 VC1.1 145 23.2 0.04% −1 3 −6 −5 4 2
13 VC1.2 163 2.7 0.01% −1 2 −9 8 7 −13
14 VC1.3 89 24.1 0.01% −1 3 −7 −3 5 1
15 VC1.4 107 36.5 0.02% 0 1 −3 −4 4 1
16 VC1.5 71 27.2 0.03% 0 4 −5 −5 3 1
17 WD0.2 37 6 −0.06% 0 0 0 47 2 −47
18 WD0.4 54 9.7 0.00% 0 −2 −2 0 5 0
19 WD0.6 93 10.1 0.01% 1 2 −9 −3 6 0
20 WD0.8 100 25.9 0.02% −1 2 −2 −10 5 1
21 WD1.2 84 7.6 0.00% 2 3 −8 −2 3 0
22 S0.2 107 16.6 0.08% 0 −1 −4 0 6 1
23 S0.4 75 5.7 0.04% 0 0 −3 −2 5 0
24 S0.6 66 37.3 0.00% 0 0 −2 −2 4 1
25 S0.8 74 10.6 0.02% −1 0 −7 −5 7 3
26 M(0.2, 0.2, 0.2, 1) 63 21.7 0.01% −2 4 −8 −3 4 1
27 M(0.2, 0.2, 0.8, 1) 91 7.9 0.01% 1 4 −8 −2 5 −5
28 M(0.2, 0.8, 0.2, 1) 233 13.9 0.00% −1 1 −8 0 7 0
29 M(0.2, 0.8, 0.8, 1) 137 5.8 0.00% −2 7 −9 −5 2 2
30 M(0.8, 0.2, 0.2, 1) 176 18 0.02% 0 0 −8 −3 8 1
31 M(0.8, 0.2, 0.8, 1) 158 3.5 0.01% −1 0 −4 17 4 −15
32 M(0.8, 0.8, 0.2, 1) 76 10.8 0.01% −1 7 −11 −8 4 0
33 M(0.8, 0.8, 0.8, 1) 104 8.8 0.00% −2 0 −5 0 5 0
34 M(1.2, 1.2, 1.2, 1.2, 1) 199 70.2 0.02% 3 −8 −4 −3 8 7
35 M(1.4, 1.4, 1.4, 1.4, 1) 260 138.4 0.05% 2 −5 −6 −15 9 24
36 M(1.6, 1.6, 1.6, 1.6, 1) 778 65.9 0.06% 6 −16 8 30 9 −4

Average 320.5 42.5 0.07% 1.55 1.34 −3.82 43.72 1.87 0.24

a. Time improvement = Time Heuristic/Time MIP-OLN. b. Cost difference=(Cost Heuristic- Optimum)/Optimum.
c. Difference value = Value Heuristic-Value optimum.
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