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1. Service Supply Chain Introduction

 Traditional supply chains deal with flows driven by customer demand

Raw Materials .
Sourcing m Distribution m

» Service supply chains deal with flows driven by product failure/customer
dissatisfaction, and occur after the sale

Customer Returns / Spare Parts Warranty
Reverse Logistics Planning management
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1. Service Supply Chain Financial Impact

=

Consumer electronics Apple
industry
On average, 2.7% of Apple’s
warranty service revenue
costs represent 6%
of total revenue $4.6b (2013)
$4.9b (2014)
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1. Machine Data & Predictive Analytics

Data Monitoring
Applications

Sensors Data from loT Devices Data Analytics

«  Within the last 5-10 years, the number of internet connected devices
(commonly known as the “Internet of Things”) has exploded

 How can companies incorporate this information into their spare
parts planning process?
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1. Data Set Generation

« Before comparing forecasting methods, needed to generate a demand
data set to use in each of the two different methods

« Accomplished by incorporating three different pieces of information:

Sales » Warranties - Failures
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2. Data Set Generation

Sales -y

Sales are generated using the Bass Diffusion Model
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2. Data Set Generation

&

les (ll Warranties = gSSEGIIUFES

« Warranty periods are assigned randomly to each machine sold
« Sales and warranty information create an installed base

Warranty Proportion Warranty Cumulative
Warranty ID Warranty Length (days)
of Population Proportion
A 156 0.3 0.3
B 260 0.7 1.0

Installed Base
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2. Data Set Generation
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L Warrantessy Failures
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2. Demand Set Generation

11

» Installed base and failure rate function create a simulated demand
statement that we can use to test the two different forecasting models
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3. Time-Series Forecasting Methodology

« Atime-series forecasting method forecasts future spare part demand
based on the historical demand statement to date
« We evaluate two different methods of time-series forecasting:

Simple exponential smoothing Simple exponential smoothing with trend
Fiesyi=axdi+(1—a)*F_q, Fteerr = Seevr T Tees1
Strv1 = a*dp + (1—a)= (St—l,t + Tt—l,t)

Tirs1 = P * (Ft,t+1 - Ft—l,t) + (1 -p) = (Tt—l,t)
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3. Time-Series Forecasting Methodology

* Forecast from time-series is plugged into R, S system

* To maintain certain level of service, we define a reorder point S. If the
inventory level is under some level S, place an order of size S less the
current inventory position

St = Up+r, T Z* RMSE| g, Qpe = max (S¢ — 1P, 0)

RMSE is derived from error
between forecast and actual
demand over the last ten periods

-

—— Demand ----- Fcst Demand -
14 MIT Supply Chain



Introduction to
Service Data Set

Methodology —
Predictive Results and
Analytics Data Analysis
Forecasting

Conclusions
and

Implications

Methodology —
Time-Series
Forecasting

Supply Chains Generation
& loT

&

A—

15 MIT Supply Chain

MANAGEMENT



4. Predictive Analytics Methodology

* Predictive forecasting approach runs on a binary classification matrix

« Assumes some analysis of a set of machine data has taken
place and been compared to a related set of spare parts

dispatches
predicted value
true false
actual true True Positive False Negative TPR = tp / (tp+fn)
value false False Positive | True Negative FPR = fp/(fo+tn)

PPV = tp/(tp+fp) NPV = tn/(fn+tn)
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4. Predictive Analytics Methodology

actual
value

true
false

predicted value

true

false

True Positive

False Negative

False Positive

True Negative

PPV = tp/(tp+fp) NPV = tn/(fn+tn)

TPR =tp / (tp+fn)
FPR = fp/(fo+tn)

« TPR: Of the total number of failures, how many were predicted?

* FPR: Of the total number of non-failures, how many were falsely

predicted?

* PPV: Proportion of signals that accurately predict a failure

* NPV: Proportion of non-signals that accurately predict a non-failure
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4. Predictive Analytics Methodology

* We use the binary classification matrix and the size of the installed
base to generate a forecast

* 1. Assign signals to failures using the TPR & FPR
2. Adjust signals based on the PPV and NPV

3. Plug forecast into R, S policy

S; = Fiq tr ¥ F o ¥ Z7sqrt(Viy g + Vi o)

S covers demand
in these periods
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5. Results & Data Analysis

« Each of the time-series forecasting models run 15x each
 Find that exponential smoothing with trend model provides lower
inventory while sustaining acceptable service level
 Provides a baseline for comparison against predictive analytics
model

Simple Simple Exponential
Metric Measurement Exponential Smoothing with
Smoothing Trend
Avg. Inventory Average 8.884 8.592
CSL Average 96.50% 95.98%
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5. Results & Data Analysis

» The predictive forecast model was run 15x at each combination of
the TPR and FPR in 10% increments between 0 and 1

* Allows for sensitivity analysis of varying levels of predictor accuracy

* New signals and demand statements created for each iteration of
simulation in VBA

oD

Visual Basic

XE
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5. Results & Data Analysis
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5. Results & Data Analysis

Variation in FPR (TPR = 1)
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5. Results & Data Analysis

« Each of the predictive forecasting models run 15x at each unique
combination of TPR and FPR, in 10% increments of each

Predictor Value Plot
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5. Results & Data Analysis

» As confusion matrix provides more accurate results, less amount of
variance in our forecast

* In turn, this drives down the necessary safety stock to reach a
certain service level until reaching 0O, leaving only the cycle stock and
reaching the minimum possible average inventory

-33313? ¢ TPR&FPR

cycle stock
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6. Conclusions and Implications

* Provides concrete method for meshing together predictive analytics
with spare parts inventory planning

« Could :
 Potentially represent a significant reduction in working capital for
companies as they are increasingly able to squeeze inventory
out of their supply chain

* Reduce total penalty costs paid in SLA/warranty servicing as
companies are able to get a better jump start on service request

ahead of time

 Potential redesign of service supply chain network to aggregate
inventory across multiple local spare parts field depots & trunk

stocks into more centralized locations
* reduction in shrinkage, obsolescence and damage
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Questions?
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