Raw Material Inventory Strategy for Make-to-Order Manufacturing

Authors: Vikash Chandra, Michael Tully Advisor: Fredrik Eng Larsson

MIT SCM Research FEST

May 19, 2016

Agenda

- > Context
- > Current Structure
- > Approach
- > Results
- > Questions

Context

Context contd.

So why change inventory policies and why not do it the conventional way?

Supplier service levels are variable

- > Supplier service levels (SSL) are variable and can greatly impact production
- > The actual quality of the raw material is the problem
- > Switching to another supplier not always practical

Can Inventory policy changes mitigate the effect of SSL decline?

Cost information not available

- > Traditional inventory policy determination requires cost and/or service level information
- > Trade-off information is needed in order to devise strategies
- > An <u>evaluation tool</u> is more appropriate to help understand policy change effects <u>Can a model for testing the effects of inventory policy changes be</u> <u>built without cost information?</u>

Current Structure

Two echelon, centralized inventory management

Current Structure contd.

Approach

Key metrics and cost factors

1	Production Fill Rate	= Production quantity fulfilled on time / Total production quantity
2	Regular shipments	= Number of regular shipments in a year
3	Expedited shipments	= Number of expedited shipments in a year
4	Transshipments	= Number of transshipments in a year
5	Average inventory	= Sum of daily starting inventory / 365

Note: All metrics are averaged over two plants

Which model to use?

Numerical Model	Simulation Model
 > Provides the optimal solution > Harder to formulate > Without cost info, certain values cannot be deduced > Less flexible > Future changes can be difficult to add 	 Does not provide optimal solution but can be a good <u>evaluation tool</u> Easier to implement Can work with number of events instead of costs Flexible, modifications easier to implement Easy to use within sponsor organization

Solution approach

- > The possible combinations of parameters under various inventory policies is extremely high
- > Need to reduce the number of combinations

Results

Phase-1 Fix hold back level

SSL = 97%

Phase-2 Vary inventory policy specifics and record events

Sensitivity to SSL changes

- > PFR is highly sensitive to SSL
- > A 2 percentage
 points reduction in
 SSL can have up to
 5 percentage
 points reduction in
 PFR
- > The number of shipments will need to be much higher to meet the old PFR requirements

Sensitivity to standard deviation changes

- > PFR is
 - comparatively stable to standard deviation changes
- > Same policy can be applicable over a wide range of SKUs

SSL = 97%

1.25

Can inventory policies offset SSL decline?

No, but it can help mitigate the damage. To a certain extent, PFR can be recovered.

What to do immediately?

Reduce the hold back level for transshipment. This will help the PFR improve slightly.

The current system not good enough?

The current system places large order constraints on the consignment which then needs to be replenished itself.

<u>Results</u>

- Increase reorder point
- Reduce reorder quantity
- Increase frequency of shipments
 - Analyze eventbased tradeoffs

Long term recommendations?

Increase the re-order point and decrease the order quantity. This will improve PFR but will increase costs elsewhere.

Change the supplier?

To overcome the drop in PFR due to low SSL, the ultimate solution is to find a better supplier

Can't change supplier?

Incentivize the supplier to increase the SSL. It will probably be money well spent.

Thank You!

