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ABSTRACT 

Our project sponsor, a major third-party logistics provider in Japan, experienced a severe 
disruption that destroyed one of their primary distribution centers for a specific industry. This 
disruption led to increased lead times, degraded service levels, higher logistics costs, and the loss 
of a client. Consequently, our research focused on supply chain disruptions and resiliency. We 
aimed to answer three research questions: (1) what was the loss caused by the disruption? (2) 
how should the network be rebuilt to recover from the disruption? (3) how can resiliency be 
added to mitigate the risk of future disruptions? We addressed these questions by collecting real-
world data, including data before, during, and after the disruption. We then developed mixed-
integer linear programming models of the pre-disruption network and networks optimized with 
additional candidate distribution centers. Then a scenario-planning approach was employed to 
evaluate the costs and resiliency of these models. Our results revealed the loss caused by the 
disruption (7.4% cost increase), the estimated improvement of the company's disruption recovery 
plan (3.5% cost reduction), and the potential to achieve a more resilient network without 
additional costs. The results can be used not only to recover from the disruption but also to 
enhance the efficiency and resiliency of their logistics network. Furthermore, our research 
highlights the potential utilization of the developed network model for mitigating future risks and 
enabling contingency planning in the event of network disruptions. 
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Chapter 1. Introduction 

Recent disruptive events, such as the spread of COVID-19 and the Russia-Ukraine war, 

have demonstrated the vulnerability of the global supply chain and emphasized the importance of 

resilience in supply chain networks. Additionally, efficient supply chains are a necessity for 

organizations to remain competitive in the face of fierce global competition.  

Our sponsor company, a third-party logistics (3PL) service provider in Japan, provides 

logistics services, including transportation, warehousing, and freight forwarding, for various 

industries. Also, the company has an outsized footprint in the specific industry that our research 

focuses on, operating nine dedicated and eight multi-industry warehouses handling products in 

regions around the country. 

In the early 2020s, the company's logistics network for that specific industry was severely 

impacted by a disruption that affected one of its major distribution centers (DCs) in the Kinki 

region of Japan. Kinki is a broad region located in the central-west part of Japan and consists of 

six prefectures, within which Osaka, the second-largest city in Japan, is situated. The disruption 

resulted in the total loss of the facility, causing increased logistics costs, degraded service levels, 

and the loss of a client.  

In addition, the sponsor company suffered further adverse effects. Temporary operations, 

lasting several months, included relocating office workers to warehouses to meet the redirected 

demand from the lost facility until backup sites were ready. The increased transportation lead 

times from the temporary locations caused the service levels to deteriorate for their clients’ 

customers. This led to the loss of a client that prioritized shorter lead times. The company’s 

significant monetary losses and client churn strongly motivated the company to examine if and 

how the resiliency of its current supply chain network could be improved. 
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The company had not yet utilized optimization models for its network design or 

disruption mitigation strategies, but they were interested to see how these techniques could have 

informed their response to the adverse event and if they could have reduced the monetary losses 

and lead time degradations. The repercussions of the disruption have highlighted the importance 

of maintaining lead times in a disrupted network. Also, with demand for their services in Japan 

expected to grow, the company aims to increase the number of warehouses to meet this demand 

while replacing the existing backup facilities. Previously, the company had used qualitative 

factors when selecting a facility's location based on expert opinion and the availability of suitable 

land or commercial real estate at the time of decision-making. Going forward, they plan to use 

optimization models to evaluate the location of additional facilities.  

This research uses travel distance as a proxy for lead time, as actual lead time is a 

complicated calculation involving operations and data outside of our scope. Going forward, this 

paper will use transportation distance and cost to evaluate our research scenarios. 

1.1. Problem Statement and Research Questions 

The sponsor company is now seeking to develop an optimal data-driven process to locate 

facilities in terms of resilience and efficiency. One suggested approach is to create a digital 

model of the supply chain network that can be used for the strategic planning of future networks. 

We hypothesize that creating a digital model of the supply chain network will improve their 

strategic planning. 

Three key research questions arise from the context described above: 

Research Question 1 (Q.1):  

How did the warehouse disruption affect the company’s logistics network costs and 

transportation distances? 



 

 10 | 73 

 

Research Question 2 (Q.2):  

How efficient is their pre-disruption, current, and planned network regarding total 

logistics cost, and can they be improved by adding additional DCs?  

Research Question 3 (Q.3):  

How resilient is their planned network, and can it be improved by adding an additional 

DC?  

The answers to these questions will provide the company with a critical understanding of 

what happened, what the costs of their response to the crisis would have been with a more 

resilient network, and how to build a balanced resilient and efficient network for the future. 

Firstly, the answer to Q.1 quantifies the actual impact the company experienced as a 

result of the disruption. Secondly, the answer to Q.2 assesses the effectiveness of their recovery 

plan, focusing on the development of a substitute facility. In addition, we explored alternative 

network configurations, such as the incorporation of a new DC in another region of Japan and 

forcing each manufacturer to use a third stock point. Currently most manufacturers maintain two 

stock points in the Kanto and Kinki areas. Finally, to answer Q.3, we evaluated the solutions 

derived from Q.2 in terms of resiliency. Specifically, we hypothesize that the addition of a third 

DC may lead to reduced total logistics costs and enhanced resiliency. Q.3 aims to quantify these 

effects, providing valuable insights into the potential benefits of such a configuration. The 

specific methods employed to answer these questions will be discussed in Chapter 3. 

1.2. Research Scope 

This research project aims to design a resilient and efficient 3PL network for a Japanese 

company by developing an optimizable mathematical model. This model is based on real-world 

data and can be optimized for various scenarios to gain strategic insights. The goal is to provide 
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the sponsor company with insights from analyzing the supply chain disruption, newly developed 

network models, and disruption simulations. They can then use these insights to further mitigate 

the effects of risks on their supply chain. 

Our project plan included the following steps: First, we collected the necessary data, such 

as customer demand and shipment data, from the company’s system. Second, we conducted 

qualitative interviews to understand the potential risks the company faces and their mitigation 

plans for those risks. This qualitative information was utilized to develop risk scenarios for later 

analysis. Third, collected data was cleansed and validated. After validation, it was transformed 

into input for the optimization models. Fourth, the optimization models were developed with 

specialized software, incorporating information such as cost structure, business constraints, and 

customer demand. Fifth, the scenarios developed through interviews and communication with 

the sponsor company were integrated into the model. Lastly, those results were analyzed to 

deliver insights to the company. 

 

Chapter 2. State of the Art 

To best meet the project goals, we researched four main topics: supply chain resiliency 

(SCR), supply chain network design (SCND), supply chain disruptions, and supply chain risk 

mitigation. We researched these four topics in their general form and more specific categories of 

SCR and SCND. We learned that there is significant overlap among these topics as they have 

similar objectives. Under SCR, we discovered articles related to 3PL and lead time’s relationship 

with SCR (distance instead of lead time in our research.) For SCND, we discovered papers 

related to 3PL and SCND under uncertainty. Our primary goals in researching SCR were to 

discover relevant ways to measure resiliency and establish strategies to improve it. We were also 
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hoping to gain a better understanding of the latest techniques used in SCND and what unique 

considerations a 3PL company may have. We also researched categories of disruptions, how they 

affect supply chains, and what are effective ways to become resilient to their effects. Lastly, we 

gained a better understanding of supply chain risk mitigation and how it can work in 

coordination with SCND.  

2.1. Supply Chain Resiliency 

The concept of resiliency has been steadily gaining attention among supply chain 

professionals, largely as a response to recent global incidents such as the COVID-19 pandemic, 

the conflict in Ukraine, and the threat of other regional conflicts. However, despite its growing 

significance, there is no universally accepted definition of SCR. The interpretations of SCR 

differ across various research studies. Krikke & Gknatsas (2020), in their literature review, have 

compiled an assortment of these definitions in Table 1.  
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Table 1 

Definitions of Supply Chain Resilience 

 

Note. Reprinted from “Towards a Pro-Silience Framework: A Literature Review on Quantitative 

Modelling of Resilient 3PL Supply Chain Network Designs,” by Krikke, H. R., & Gknatsas, E., 

2020, Sustainability (Basel, Switzerland), 12(10), p. 3. Copyright 2020 by the Authors. 

 

In a broader context, resiliency in supply chain networks can be generally defined as the 

capability of a supply chain to anticipate, withstand, recover from, and adapt to various 

disruptions or unexpected events, thereby maintaining its functionality and effectiveness. 

Maharjan & Kato (2022) identified a variety of quantitative measures from their examinations of 

past research. They then classified these measures as proactive or reactive measures, 

corresponding to actions taken before or after a disruption, respectively. The measures were then 

broken down into the part of the network the measures were affecting; nodes, links, or both. 

Their table showing their classification is reproduced in Table 2. As represented in the table, 

Maharjan & Kato (2022) identified a lack of proactive and reactive link-based resiliency 
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measures in the research. Prior to the disruption, the sponsor company was utilizing a significant 

number of the identified proactive node-based resilience measures, such as facility fortification, 

facility redundancy, lateral transshipments, multiple allocations of facilities and customers, 

demand coverage, and segregation/dispersion of facilities. As a 3PL, safety stock is not an 

available measure because the sponsor company has no say on the amount of total inventory, but 

they do have a say on where it is positioned. After the disruption, the sponsor company utilized 

all reactive node-based resilience measures identified by Maharjan & Kato (2022); flexible 

capacity at the facilities, reassigning of customers, and expansion of facility capacity. This 

reflects well on their preparedness and allowed them to respond quickly to the disruption. For 

example, they were able to serve customers from alternative DCs the very next day after a 

complete loss of a DC.  
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Table 2 

Classification of Resilience Measures 

 

Note. Reprinted from “Resilient supply chain network design: A systematic literature review,” by 

Maharjan, R., & Kato, H., 2022, Transport Reviews, 42(6), p. 747. Copyright 2022 by Informa 

UK Limited. 

 

This project examines the effect of increasing some already existing proactive node-based 

measures, specifically facility redundancy, multiple allocations of facilities and customers, and 

demand coverage. Our tested scenarios include adding additional DCs and assigning 

manufacturers to three DCs instead of the company policy of two.  

2.2. Supply Chain Network Design 

SCND plays a significant role in determining a company’s operations and how its 

resources are spent. Consequently, it requires the decision-making of senior management. Their 

decisions on business policies, investments, and deployment issues will determine whether a 
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company has a well-designed supply chain, and good SCND is an essential driver of operational 

efficiency and, therefore, competitiveness (Janjevic et al., 2022). 

One of the main goals of SCND is to determine the quantity, location, and mission of 

warehouses and other facilities for a company (Martel & Klibi, 2016). Two common prescriptive 

analytical approaches to assist in these decisions are optimization and simulation. And to support 

good supply chain design, it is beneficial to combine these two methods (Janjevic et al., 2022).  

One common optimization technique for SCND is mixed-integer linear programming 

(MILP). Its goal is to maximize or minimize a performance measure (e.g., profit or total cost) 

while observing defined constraints (e.g., warehouse capacity, customer demand). The 

maximization or minimization results in the calculation of optimal network parameters such as 

facility locations, number of facilities, and flows between nodes (Janjevic et al., 2022). 

2.3. Network Design in a 3PL Context 

In the context of 3PL supply chain networks (SCNs), Krikke & Gknatsas define 

resilience as the “capability of a 3PL SCN in the event of unexpected shocks of high-impact, 

low-probability of occurrence, to concurrently return to its original or improved situation and 

thrive amid disturbances without lowering its competitive advantage under normal operating 

conditions” (Krikke & Gknatsas, 2020, p. 3) The variety of resilience definitions Krikke and 

Gknatsas encountered are illustrated in Table 1. The literature shows a lack of combined supply 

chain resilience and operations research/management science (OR/MS) approaches. There is also 

sparse research on network design, specifically focused on the 3PL context. (Krikke & Gknatsas, 

2020). 

Krikke & Gknatsas were also unable to find papers related to low-frequency, high-impact 

events specifically affecting 3PL networks, with the exception of one paper by Janic (Janić, 
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2019) that examined heavy Easter Storms (Krikke & Gknatsas, 2020). 

2.4. Supply Chain Network Design Under Uncertainty 

The Covid-19 pandemic, the war in Ukraine, and geopolitical risks have placed supply 

chain front and center in many companies’ minds and have even introduced the concept of 

supply chains to the public. As Janjevic et al. find: “One thing has become abundantly clear to 

supply chain managers in recent years: Disruption, uncertainty, and risk have all increased. 

Product demand, costs, freight transportation rates, lead times, exchange rates, and capacity 

requirements are naturally exposed to various sources of uncertainty.” (Janjevic et al., 2022, p. 

20) 

The increasing relevance of supply chain disruptions forces companies to incorporate risk 

management and resilience into their supply chains. Failing to do so places a company at a 

significant disadvantage (Janjevic et al., 2022). 

It is common for companies to design their supply chains for the assumption of expected 

conditions (e.g., average lead times). These designs will then be subjected to a range of scenarios 

to gauge the sensitivity. But, the probability and impact of these scenarios are not included in the 

design operation. To properly handle uncertainty, companies should incorporate uncertainty into 

their SCND process (Janjevic et al., 2022). 

One approach to embedding this uncertainty in the design process is optimization 

modeling. Optimization is an essential tool for SCND, and although there are a variety of 

optimization techniques, Saragih states: “Literature on supply chain network design under 

uncertainty falls into three main categories: (1) Stochastic Optimization, (2) Robust 

Optimization, and (3) Fuzzy Optimization.” (Saragih, n.d., p. 3) 

First is stochastic optimization. Stochastic optimization incorporates parameters usually 
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modeled on discrete scenarios with known probabilities (Govindan et al., 2017). These 

probability distributions are used instead of deterministic inputs. An example of this would be 

using a probability distribution instead of a specific value for a customer’s demand. The problem 

can then be solved using continuous, chance-constrained, or scenario-based techniques (Saragih, 

n.d.). A subset of stochastic programs is two-stage stochastic programs. SCND decisions are 

often made in two stages, with the first stage representing long-term decisions, including the 

location of facilities and facility capacities. The second stage represents the operational and 

tactical decisions. These include determinations such as inventory, production, transportation, 

and routing. Two-stage stochastic programs are standard solutions to problems where the random 

variables are realized after the first stage decisions are made (Govindan et al., 2017). 

The second is robust optimization (RO). RO can be used for problems where there is 

uncertainty in the variables, but instead of known probabilistic distributions, uncertain 

parameters can be modeled with continuous or discrete scenarios (Govindan et al., 2017). 

Saragih states: “In discrete scenarios, a decision-maker can minimize maximum costs across all 

scenarios (minimax cost) or minimize the difference between the worst and optimal solutions in 

a scenario (minimax regret)” (Saragih, n.d., p. 4)  

Third is fuzzy optimization (FO). Like RO, FO is also intended to handle uncertainty. 

This technique allows the model to incorporate flexibility into both the objective function and the 

constraints (Govindan et al., 2017). There are two primary types of fuzzy mathematical 

programming - flexible programming and possibilistic programming. In the context of the 

traditional linear programming model, fuzzy objectives and sets are used to account for the 

ambiguity inherent in a decision-maker's goals and limitations. In essence, flexible programming 

caters to scenarios where goal values are adaptable, and constraints are not rigidly set. 
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Another approach, possibilistic programming, is another form of the traditional linear 

programming model. It is designed to handle uncertainties by modeling vague or imprecise data 

through possibility distributions. This approach is particularly beneficial when there is a lack of 

precise information regarding a model's parameters. 

Furthermore, fuzzy mathematical programming allows for the handling of ambiguous 

coefficients and unclear preferences, highlighting its versatility in managing various forms of 

uncertainty in supply chain network design. 

Though stochastic optimization, robust optimization, and fuzzy optimization are 

promising techniques for handling uncertainty, they are typically used for a different kind of 

uncertainty than what we are modeling. Our goal is not to examine the effects of uncertain 

demand or lead times but instead to model the effects of significant disruptions on the network. 

Scenarios are a more appropriate technique for these low-probability, high-impact events. 

Low-probability, high-impact risks pose a unique challenge in uncertainty. There is a lack 

of historical data to calculate accurate probabilities, and even with their catastrophic impacts, 

their low probabilities limit their effect on supply chain design using traditional methods. 

Scenario planning is one technique that encourages proactive preparation for these possible 

events by allowing companies to understand the potential impacts. Also, a proactive approach 

using quantitative methods is a more efficient investment than incurring the costs of a reactive 

approach to a disruption (Janjevic et al., 2022). 

 

Chapter 3. Data and Methodology 

As described in Chapter 2, there is modest literature about resilient 3PL network design. 

Therefore, we applied optimization and scenario planning techniques to real-world disruption 
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data of a 3PL network and analyzed how different network configurations affect its resiliency. 

Relevant data was collected from the company’s systems (e.g., Warehouse Management System 

(WMS), Financial Management System (FMS), and additional files managed by each operating 

facility). The collected data were cleansed and summarized for further analysis using several 

analytical software programs.  

For the optimization, we developed MILP models, a typical optimization method 

employed for SCND. Table 3 lists the common objective function terms considered in network 

optimization. Our objective function includes “Operating costs of facilities,” “Inventory costs,” 

“Transportation/shipment costs,” and “Processing costs in facilities” as listed in Table 3. 

“Risk/Robustness measures” are not directly incorporated in the objective function but instead 

are measured after the optimization is run for each scenario. 

The network model consists of three layers, i.e., manufacturers (company’s clients), DCs 

(company’s 3PL facilities), and customers (typically, wholesalers’ warehouses). “Operating costs 

of facilities,” “Inventory costs,” and “Processing costs in facilities” are not considered for the 

manufacturers and customers in our model because the capacity, demand, and location of these 

layers are fixed. The method of data collection and the software used to answer the questions will 

be discussed in Sections 3.1 and 3.2. The detailed configuration of the MILP model will be 

discussed in Section 3.3. Specific methods and scenarios to resolve the three research questions 

will be described in Section 3.4.  



 

 21 | 73 

 

Table 3 

Major Objective Function Terms for Network Design 

 

Note. Reprinted from “Supply chain network design under uncertainty: A comprehensive review 

and future research directions,” by Govindan, K., Fattahi, M., & Keyvanshokooh, E., 2017, 

European Journal of Operational Research, 263(1), p. 118. Copyright 2017 by the Authors. 

 

3.1. Data Collection 

First, we retrieved the logistics and financial data of nine manufacturers served by 
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DC_01, the disrupted DC, before the disruption. The data was retrieved from the WMS and FMS 

databases for analysis. We also collected manually maintained data from the operating facilities. 

The nine manufacturers relied entirely on the company for their product storage and delivery, 

and their inventory was stored at DC_01 and eight other DCs. We also retrieved logistics data 

from these other eight DCs so we could investigate how the disruption affected the company’s 

overall network. From the WMS, we retrieved inbound and outbound shipment details, 

transportation data, inventory data, and product masters. Inbound shipment details include 

product codes; lot numbers; source codes and locations; DC codes and locations; and the 

received amount in quantity, weight, and volume. From this data, we verified the percentage of a 

manufacturer's total shipment volume originating from each manufacturing site, broken down by 

product. The percentages needed to be calculated for each manufacturer at every DC that 

contained the manufacturer’s product. These percentages were incorporated into the optimization 

model to replicate the inbound flow. 

Outbound shipment details include similar data as the inbound shipments. But in 

addition, the outbound shipment details contain information on shipment numbers and 

transportation modes, such as less-than-truckload (LTL), full truckload (FTL), and parcel. This 

data represents the current flows from DCs to customers, and the shipment volumes to the 

customers are used as the customer demand for the optimization models. There may be 

discrepancies between the actual demand and shipment data, as unmet demand due to factors like 

stock-outs is not included in the shipment data. Nevertheless, since we could not obtain the true 

demand from the WMS, we opted to use shipment data as a proxy for demand. 

Transportation data corresponds to the outbound shipments but is less granular and lacks 

product codes. But, it does contain transportation costs and distance for each shipment. We ran a 
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regression analysis on this dataset to formulate linear equations for transportation costs in the 

optimization model. This data includes multiple transportation modes, and a separate regression 

analysis was applied for each transportation mode to improve accuracy. While transportation data 

could also be used as customer demand, like shipment data, we were unable to retrieve 

transportation data for all Manufacturer-DC combinations. Therefore, we used outbound 

shipment details as the basis for customer demand. 

Inventory data includes product codes, DC codes, and inventory quantity. These data, 

together with outbound shipment details, were used to determine the inventory turns for each 

manufacturer. This was incorporated into the model to calculate the inventory based on shipment 

volume. 

The FMS provides financial data. It contains daily to monthly cost data for each 

manufacturer-facility combination, including major logistics costs, such as operational, 

transportation, storage, and administrative costs. The transportation cost data, however, is 

aggregated daily or monthly and does not include detailed shipment information. Therefore, the 

transportation data described previously were used to formulate the transportation costs, and the 

financial data from the FMS were used for other logistics costs. The accuracy of the financial 

data was confirmed by comparing the aggregated expenses to the actual invoice data collected 

from operating facilities.  

3.2. Software 

A variety of software was used for each stage of analysis, specifically Microsoft Power 

BI (Power BI), Python and its data analytics libraries, and Coupa Supply Chain Design & 

Planning (SCD&P). Power BI is a general-purpose business intelligence software widely used in 

different industries. It has three primary functions: Extract-Transform-Load (ETL) with Power 
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Query (PQ) language, data modeling with Data Analysis eXpression (DAX) language, and data 

visualization. Because WMS data is separated by manufacturer-facility-month combinations and 

consists of a few hundred TSV (Tab-Separated Values) files, the ETL function was used to 

integrate these data. It was also used to mask the original data (e.g., delete specific names and 

exact addresses, as the sponsoring company required). After the data preparation was completed 

with the ETL function, a data model was developed with DAX. Using this data model, original 

data was transformed and aggregated into a form that can be utilized by SCD&P to perform 

optimization on supply chain network models. After the optimization was completed with 

SCD&P, the output was loaded into Power BI and visualized for the stakeholders. 

Python was mainly used for regression analysis on the transportation data. It was also 

used to visualize the original data and optimization results and to complement the Power BI 

visualization capabilities.  

SCD&P is a commercial software focused on supply chain design, including SCND, 

vehicle routing optimization, multi-echelon inventory optimization, and safety stock 

optimization. We used SCD&P to model the logistics networks and formulate MILPs. A 

commercial solver, CPLEX, is included to solve optimization models. 

3.3. Network Models 

Figure 1 provides a comprehensive illustration of the overall research process, which 

effectively captures the end-to-end process of the analysis. Encompassing the various integral 

components, such as input data and source, sub-processes (demand & network analysis, cost 

structure analysis, and scenario development), optimization models, and research questions, this 

schematic representation elucidates the interconnected nature of these elements in the context of 

the analytical framework. In Section 3.3.1, a detailed formulation of the objective function and 
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constraints is discussed. 

 

Figure 1 

Overview of the Research Process 

 

 

In our study, we built MILP models to tackle the intricacies of multi-period, multi-

product, and multi-echelon network optimization. Our models are based on a monthly period, 

starting from the month following a severe disruption that impacted one of the company's major 

DCs, and encompass nine months' worth of demand data. Instead of considering individual 

SKUs, products in our models are aggregated at the manufacturer level, with all SKUs from a 

single manufacturer treated as a single product. The networks are comprised of three echelons: 

manufacturing sites, DCs, and destinations, with no direct shipments allowed from 

manufacturing sites to destinations. This section provides a comprehensive overview of the 

models’ specific components, including sets, variables, decision variables, an objective function, 
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and constraints.  

3.3.1. Sets 

Our sets incorporate manufacturing sites, potential DCs, customers, manufacturers, 

transportation modes, and periods represented by M, D, C, P, T, and H, respectively. 

 

Sets: 

𝑀 = set	of	manufacturing	sites	𝑚; let	𝑀 = {1, 2, … ,𝑚}; 

𝐷 = set	of	potential	DCs	𝑑; let	𝐷 = {1, 2, … , 𝑑}; 

𝐶 = set	of	customers	𝑐; let	𝐶 = {1, 2, … , 𝑐}; 

𝑃 = set	of	manufacturers	𝑝; let	𝑃 = {1, 2, … , 𝑝}; 

𝑇 = set	of	transportation	modes	𝑡; let	𝑇 = {1, 2, … , 𝑡}; 

𝐻 = set	of	periods	ℎ; let	𝐻 = {1, 2, … , ℎ} 

 

 The models encompass nine manufacturers and 26 manufacturing sites, as each 

manufacturer operates more than one in-house and outsourced site. While there are a total of 16 

potential DCs, the number of sites utilized varies across different scenarios, as detailed in Section 

3.4. Figure 2 shows the locations of DCs considered in the models. Although the original data 

includes 6,507 customers, these customers were aggregated into individual municipalities, 

resulting in 932 customer destinations within the model. Figure 3 shows the geographical 

customer demand distribution. Five transportation modes are featured in our model, namely 

parcel (dry), parcel (reefer), LTL (dry), LTL (reefer), and FTL, with variable and fixed 

transportation costs depending on factors such as geographical regions of origin, destination, and 

shipment weight. Section 3.5. provides a comprehensive analysis of transportation costs. Lastly, 
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the models comprise of nine periods, each lasting one month, with the first period commencing 

the month (two days later to be exact) after the company experienced the severe disruption, 

allowing for a quantitative evaluation of the disruption's impact. 

 

Figure 2 

Existing and Potential DCs Included in the Model 

 

Note. Locations indicated in red are existing DCs. Locations indicated in blue are potential DCs. 
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Figure 3 

Geographical Distribution of the Customer Demand 

  

Note. Showing the demand distribution of the data used for optimization. The demand is 

aggregated into municipalities. The size of the bubble corresponds to the demand in weight. 
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3.3.2. Variables 

We introduced the following variables to construct the model. 

 

Variables: 

𝑤!"#$ = demand	for	manufacturer	𝑝	at	customer	𝑐	by	mode	𝑡	in	period	ℎ 

𝑙𝑚%& = transportation	distance	between	manufacuturing	site	𝑚	to	DC	𝑑 

𝑙𝑑&! = transportation	distance	between	DC	𝑑	to	customer	𝑐 

𝑖" = 	annual	inventory	turns	for	manufacture	𝑝 

𝑓# = average	units	of	shipment	for	transportation	mode	𝑡 

𝑐𝑡# = cost	of	shipping	one	unit	of	product	for	one	unit	of	distance	by	mode	𝑡 

𝑐𝑢# = fixed	cost	of	a	shipment	for	mode	𝑡 

𝑐𝑠 = cost	of	storing	one	unit	of	product	per	period 

𝑐𝑓"$ = Fixed	cost	of	hosting	manufacture	𝑝	at	any	single	DC	in	period	ℎ 

𝑐𝑜" = warehouse	handling	cost	of	one	unit	of	product	of	manufacturer	𝑝 

𝑟𝑚%" = percentage	of	production	units	at	manufacturing	site	𝑚	for	manufacturer	𝑝 

 

 Customer demand, 𝑤!"#$, is derived from shipment data extracted from the WMS. 

Figure 4 displays the monthly demand weight by DCs. We collected shipment data for 20 

periods, with each period representing one month. The average demand is 3,287 metric tons per 

month, and seasonality is evident as demand decreases in January and February, then rises in 

March and April. DC_01 is the DC that was disrupted in Period 0, which is reflected in Figure 4 

showing its shipment volume drops to zero. For several months, other DCs (DC_11 to DC_15) 

handled the redirected demand, and temporary facilities (DC_21 to DC_24) located close to 
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DC_1 began operations to cover the shortfall. Demand before Period 1 was used for setting 

variables and understanding the network structure but not for optimization. Demand from 

Periods 1 to 9 was used for the optimization scenarios. 

 

Figure 4 

Monthly Demand (Metric Ton) by DCs 

 

Note. Summarized from the shipment data extracted from the WMS. The length of the period is 

one month. DC_01 was disrupted at the end of Period 0. Temporary substitute facilities (DC_21 

to 24) eventually started to operate after Period 3. 

 

To capture the proximity between all nodes, we introduced a measurement, 𝑙𝑚%&: 

distance (in kilometers). As mentioned previously, distance was used as a proxy for lead time. 

Actual road distances for each combination of nodes were calculated using Bing Maps API.  

Annual inventory turns (𝑖") are dependent on manufacturer p, and the inventory level at 

each DC is determined by the throughput and inventory turns of each manufacturer. Notably, our 

model does not take the risk-pooling effect into account.  

The percentage of production units at each manufacturing site for a specific manufacturer 
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is established by 𝑟𝑚%", mandating that all DCs source from upstream manufacturing sites 

according to the designated percentages.  

All the cost-related variables,	 𝑐𝑡#,	 𝑐𝑢#,	 𝑐𝑠",	 𝑐𝑓"$,	and	 𝑐𝑜",	are	discussed	in	detail	in	

Section	3.5. 

3.3.3. Decision Variables 

We considered three decision variables in our model. 

 

Decision Variables: 

𝑌"&$	

= {1, if	a	DC	for	manufacture	𝑝	is	located	at	𝑑	in	period	ℎ; 0, otherwise}; 

𝑈"%&#$

= amount	of	product	of	manufacturer	𝑝	from	manufacturing	site	m	to	DC	d		by	mode	t	in	period	h; 

𝑋!"&#$

= {1, if	customer	𝑐	receives	product	of	manufacturer	𝑝	from	DC	𝑑	by	mode	𝑡	in	period	ℎ; 0, otherwise} 

 

𝑌"&$ and 𝑋!"&#$ are both binary variables. 𝑌"&$ represents whether a manufacturer is 

allocated to a certain DC, and 𝑋!"&#$ represents whether a customer is allocated to a certain DC. 

𝑈"%&#$ represents the interfacility flow from manufacturing sites to DCs. 

3.3.4. Objective Function 

Incorporating the described sets, variables, and decision variables, we build the following 

objective function that minimizes the total logistics cost. 
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Objective Function: 

𝑀𝑖𝑛	 a aaaa𝑐𝑡#𝑙𝑚%&𝑈"%&#$
'∈)*∈+,∈-.∈/0∈1

+

aaaaac𝑐𝑡#𝑙𝑑&! + 𝑐𝑜" + 𝑖"𝑐𝑠" +
𝑐𝑢#
𝑓#
d𝑤!"#$𝑋!"&#$

'∈)*∈+,∈-2∈3.∈/

+

aaa𝑐𝑓"$𝑌"&$
'∈).∈/,∈-

(1)

 

 

Equation (1), the objective function, aims to minimize the total logistics cost, which is 

comprised of several components. The first term represents the transportation or shipment costs 

associated with interfacility flow from manufacturing sites to DCs. The second term 

encompasses inventory costs, processing costs in facilities, and the transportation or shipment 

costs related to customer flow from DCs to customers. Within the transportation or shipment 

costs, both variable and fixed costs are accounted for. Lastly, the third term represents the 

operating costs of the facilities. 

3.3.5. Constraints 

To constrain the models and represent reality, we introduced the five constraints listed 

below. These are base constraints utilized in all scenarios. Constraints specific to each scenario 

are described in Section 3.4. 

 

Constraints: 

a𝑋!"&#$
.∈/

= 1, ∀𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇, ℎ ∈ 𝐻 (2) 

aa𝑤!"#$𝑋!"&#$
*∈+2∈3

= a a𝑈"%&#$
*∈+0∈1

, ∀𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, ℎ ∈ 𝐻 (3) 
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aa𝑈"%&#$
*∈+.∈/

=aa𝑟𝑚%"𝑤!"#$
*∈+2∈3

, ∀𝑝 ∈ 𝑃,𝑚 ∈ 𝑀, ℎ ∈ 𝐻 (4) 

𝑀𝑌"&$ ≥aa𝑋!"&#$
*∈+2∈3

, ∀𝑝 ∈ 𝑃, 𝑑 ∈ 𝐷, ℎ ∈ 𝐻 (5) 

𝑌"&$, 𝑋!"&#$ ∈ {0, 1}, ∀𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃, 𝑑 ∈ 𝐷, ℎ ∈ 𝐻 (6) 

𝑈"%&#$ ≥ 0, ∀𝑝 ∈ 𝑃,𝑚 ∈ 𝑀, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇, ℎ ∈ 𝐻 (7) 

 

Equation (2) guarantees that each customer's demand for each manufacturer's products by 

each transportation mode in each period is satisfied by one and only one DC. Equation (3) 

ensures that the total flow of goods through the distribution centers, considering different 

transportation modes, matches the customers' demands. Equation (4) constrains that all customer 

demands are met while accounting for the fixed production percentage of each manufacturing 

site of the manufacturer. Equation (5) enforces the constraint that 𝑌"&$ must be equal to one 

when there is a flow of a product from a manufacturer at a DC. The variable M represents a large 

constant number, often referred to as the "big M" constraint in optimization models. Equation (6) 

is a binary constraint for decision variables 𝑌"&$ and 𝑋!"&#$. Finally, Equation (7) ensures that 

the interfacility flows, 𝑈"%&#$, are positive. These are our base constraints, but for the 

optimization scenarios described in Section 3.4, additional scenario-specific constraints are also 

explained. 

3.4. Optimization Scenario 

As outlined in Section 1.1, we address three research questions using optimization 

scenarios. For answering Q.1, we assessed the loss cost resulting from the disruption the 

company experienced. For answering Q.2, we evaluated the efficiency of the planned networks 

intended to replace the lost DC and investigated alternative network configurations. The answer 
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to Q.2 offers a fixed, optimal solution for facility locations and network flows. To answer Q.3, 

we measured the resiliency of the solutions derived from answering Q.2. To do this, we disrupt 

one DC at a time from the Q.2 scenario solutions, and observed the impact of low-probability, 

high-impact disruptions on the DC. The findings from answering Q.2 and Q.3 equipped us with 

valuable insights to propose a network that balances efficiency and resiliency for the sponsor 

company. The overview of the scenarios are organized in Table 4. 

Baseline and Scenario 1 address Q1. Baseline calculates the actual cost incurred by the 

company following the disruption, while Scenario 1 calculates the logistics costs under the 

assumption that the disruption did not occur and the company could continue to operate its 

original pre-disruption network. By comparing these two scenarios, we can estimate the 

disruption’s effect on logistics costs and transportation distance. 

Scenario 2 to 4_i address Q.2. The company plans to replace its disrupted facility by 

developing a new DC at a predetermined location in the near future. Scenario 2 will adhere to the 

plan, i.e., the location of the new DC and the allocations of manufacturers to the new and 

existing DCs. Scenario 3 alleviates the manufacturer allocation constraint but only uses the DCs 

from their plan. In Scenario 4_i, we add a further additional DC to the model to investigate a new 

strategy. The company’s current strategy is to allocate two DCs in different regions of Japan, 

mainly the Shuto (includes Tokyo) and Kinki (includes Osaka) regions, to each manufacturer. In 

case of a disruptive event, they can continue to ship orders from the second DC. Scenario 4_i 

also investigates the potential of allocating a third DC to each manufacturer. Here, i refers to one 

potential DC location in each of the five following regions: Hokkaido, Tohoku, Chubu, Chugoku, 

and Kyushu. Therefore, there are five sub-scenarios under Scenario 4_i. Scenarios 2 to 4_i are 

compared in terms of logistics costs and service levels to determine the most efficient network. 
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Table 4 

List of Optimization Scenarios 

Phase Scenarios Description 
Mfr. 

allocation 
 to DC 

Customer 
allocation 

 to DC 

Additional 
DC 

Inventory 
locations 
 per mfr. 

Baseline Baseline 
Estimated network IF 
the disruption did not 
happen 

Fixed to 
pre-
disruption 

Fixed to 
pre-
disruption 

no - 

  Scenario 1 Actual network (Pre- 
and Post-disruption) 

Actual 
allocation 

Actual 
allocation no - 

Cost 
optimization Scenario 2 Planned network with 

DC_41 
Fixed to 
the plan Optimized DC_41 2 

  Scenario 3 
DC_41 is added, and 
the Mfr. allocation is 
optimized 

Optimized Optimized DC_41 2 

  

Scenario 4_i  
(i = Potential 
additional 
DCs) 

one more potential 
DC is added, and 
MFG allocation is 
optimized 

Optimized Optimized DC_41 + 1 3 

Resiliency 
Scenario 2'_j 
(j = a DC to 
disrupt) 

Fixing the solution of 
Scenario 2, disrupt 
used DC one by one 

Fixed to 
Scenario 
2 

Optimized DC_41 2 

  
Scenario 3'_j 
(j = a DC to 
disrupt) 

Fixing the solution of 
Scenario 3, disrupt 
used DC one by one 

Fixed to 
Scenario 
3 

Optimized DC_41 2 

  
Scenario 4'_i_j 
(j = a DC to 
disrupt) 

Fixing the solution of 
Scenario 4_i, disrupt 
used DC one by one 

Fixed to 
Scenario 
4_i 

Optimized DC_41 + 1 3 

 
Note. List of optimization scenarios conducted in our research. Scenarios with subscripts i and j 

include sub-scenarios. 

 

Scenario 2’_j to 4’_i_j address Q.3. Here, j denotes the DCs selected in Scenario 2 to 4_i 

as a result of the cost minimization optimization. These scenarios are created to assess the 

resilience of the solutions of Scenario 2 to 4_i by closing one DC in each scenario to measure the 
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impact of potential low-probability, high-impact disruptions. This strategy was chosen because 

closing a single DC at a time reflects realities similar to what the sponsor company faced. By 

running optimizations on these scenarios, we can quantify the impact of the disruptions with 

measures such as logistics costs and transportation distance. We compare the scenarios by these 

measures to determine the most resilient network configuration. 

To develop these risk scenarios, we conducted interviews with the sponsor company to 

ask: what are the major risks their supply chain faces and what are their potential risk mitigation 

plans. The lists of risks and mitigation plans are displayed in Table 5.  

 

Table 5 

Risks the Company’s Supply Chain Faces and Potential Mitigation Plans 

 

Note. The list is created from the information collected from the discussion with the company in 

the regular meeting held on November 9, 2022. The blue type indicates the risks and mitigations 

relevant to our research. 
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These risks can be separated into three categories: 

1. Low-probability, high-impact risks (earthquake, tsunami, floods, fire) 

2. High-probability, low-impact risks (electric power failure, typhoon) 

3. External environment change (higher trucking rate, labor scarcity) 

For this project, because our research focuses on the severe disruption the company 

suffered and how to mitigate these types of potential future disruptions, we decided to focus on 

low-probability, high-impact risks, and their mitigation plans. These are displayed in blue in 

Table 5. It is important to note that a mitigation plan can apply to more than one high-impact 

risk. 

Although there are countless sources of risks, Rice (2021) argues that there are only 

seven ways a supply chain can fail. These are represented by the loss of the seven core 

capacities: 

1. Capacity to acquire materials 

2. Capacity to ship and/or transport products 

3. Capacity to communicate 

4. Capacity to convert raw materials into products 

5. Human resources capacity 

6. Capacity to maintain financial flows 

7. Capacity to distribute products to customers, including consumers 

We analyzed how the disruption affected these seven core capacities in Table 6. It had 

little to no impact on capacities 1, 3, and 6; a medium impact on 4, 5, and 7; and a significant 

impact on capacity 2. Rice (2021) defines a resilient supply chain as “one that can recreate or 

maintain the capabilities that support each of these seven operational capacities.” In this 
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perspective, to build a resilient network, we need to design a network that can recreate the 

capacities to ship, convert and distribute products and maintain human resource capacity even 

after a high-impact risk event, (e.g., floods, fire, earthquake, and tsunami).  

 

Table 6 

Disruptions Effect on the Seven Core Capacities of Supply Chain Resilience 

 

 

In Sections 3.4.1 to 3.4.8, more information about each scenario and additional 

formulations for specific scenarios, such as additional variables and constraints, will be discussed 

in detail. 

3.4.1. Baseline: Actual Flow After the Disruption 

This scenario calculates the actual costs incurred by the company following the 

disruption, as detailed in Section 3.3. Therefore, the DC that was disrupted is not utilized in this 

scenario. To achieve this, we need to constrain customer allocations to the DCs, reflecting real-

world conditions. As a result, we introduce a new variable, 𝑟𝑐!"&$#, and incorporate a constraint 

(Equation (7)) specifically for this scenario. 
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Variable: 

𝑟𝑐!"&$#

= percentage	of	fulfilled	demand	for	manufacturer	𝑝	at	customer	𝑐	from	DC	𝑑	by	mode	𝑡	in	perod	ℎ. 

 

Constraint: 

𝑤!"#$𝑋!"&#$ = 𝑟𝑐!"&$#𝑤!"#$, ∀𝑑 ∈ 𝐷, 𝑐 ∈ 𝐶, ℎ ∈ 𝐻, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (7) 

 

This constraint forces the model to represent the actual flow that occurred during the 

model horizon and, therefore, accurately estimates the financial impact of the disruption on the 

company while adhering to the actual Customer-DC allocations that occurred in practice. The 

computed cost was reviewed by the company to guarantee the accuracy of the model. 

3.4.2. Scenario 1: What if the Disruption Did Not Happen 

In this scenario, we estimate the logistics costs under the assumption that the disruption 

did not occur, and the network continues to operate as it did prior to the disruption. To achieve 

this, we introduce one additional variable 𝑟𝑑!"&#, and a constraint (Equation (8)), allowing us to 

model the network's performance without the effects of the disruption. 

 

Variable: 

𝑟𝑑!"&#

= percentage	of	fulfilled	demand	for	manufacturer	𝑝	at	customer	𝑐	in	a	specific	prefecture	from	DC	𝑑.	 
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Constraint: 

a𝑤!"#$𝑋!"&#$
*∈+

=a𝑟𝑐!"&#𝑤!"#$
*∈+

, ∀𝑑 ∈ 𝐷, 𝑐 ∈ 𝐶, ℎ ∈ 𝐻, 𝑝 ∈ 𝑃 (8) 

 

To compute 𝑟𝑑!"&#, we analyzed a year's worth of data prior to the disruption, 

aggregating demand into prefectures and calculating the percentage of demand served by each 

manufacturer and DC. As the pre-disruption data did not include customers who were added after 

the disruption, we opted to aggregate demand by prefecture in order to represent all customers. 

By comparing the cost difference between the Baseline and Scenario 1, we can determine 

the monetary loss attributed to the disruption. Additionally, we assess the transportation distance 

differences from DCs to customers between the two scenarios to understand the impact of the 

disruption. This analysis allows us to quantify the financial and operational consequences of the 

disruption to the company's logistics network. 

3.4.3. Scenario 2: Replacing the Disrupted DC According to Plan 

In Scenario 2, we model the company’s plan to replace the disrupted facility. Their plan 

includes the exact location of the facility and the allocation of manufacturers to each facility. The 

replacement facility is in the Kinki area of Japan, the same are as the disrupted facility. To 

represent their plan in the model, we created a set 𝑆"456 that consists of manufacturer (p) and 

DC (d) combinations according to the company’s replacement plan and added a constraint 

defined below. 
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Constraint: 

!!!𝑋!"#$%
&∈()∈*+∈,

= 0, ∀¬𝑆"-./ (9) 

Here, 𝑆"456 represents the planned allocation of manufacturers to DCs. 

3.4.4. Scenario 3: Optimizing the Manufacturer Allocations to DC 

In scenario 3, we continue to use the DCs from the company’s plan but optimize the 

allocation of manufacturers to DCs. 

 

Constraints: 

!!!!𝑋!"#$%
&∈()∈*+∈,0∈1

= 0, ∀¬𝑑"-./ (10) 

!!!𝑋!"#$%
2∈3)∈*+∈,

= 2, ∀𝑝 ∈ 𝑃, ℎ ∈ 𝐻 (11) 

Here, 𝑑"456 refers to the unique set of DCs in the company’s plan. This scenario 

evaluates the efficiency of this plan by comparing it to the optimal allocation. To adhere to the 

company’s current policy of assigning two DCs for each manufacturer, we set the number of 

DCs for each manufacturer to be two in Equation (11). 

3.4.5. Scenario 4_i: Adding Third DC for Each Manufacturer 

In Scenario 4_i, we explore the potential improvement in network efficiency of adding a 

further additional DC and allocating a third DC to each manufacturer. After discussions with the 

company, we identified a potential location for a new DC in each of the Hokkaido, Tohoku, 
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Chubu, Chugoku, and Kyushu regions of Japan. Here, i refers to one potential location in each 

region, resulting in five sub-scenarios under Scenario 4_i. To model this, we added two new 

constraints to our base model. 

 

Constraints: 

!!!!𝑋!"#$%
&∈()∈*+∈,0∈1

= 0, ∀¬𝑑4
"-./ (12) 

!!!𝑋!"#$%
2∈3)∈*+∈,

= 3, ∀𝑝 ∈ 𝑃, ℎ ∈ 𝐻 (13) 

In these constraints, 𝑑7
"456 refers to the potential DCs the model can choose from. This 

set comprises the DCs that the company plans to utilize (𝑑"456 from Equation (10)) and the 

added potential DC i for each sub-scenario. By incorporating these constraints, the model can 

assess the impact of adding a DC in each of the identified regions, providing insights into 

potential improvements in network efficiency. 

3.4.6. Scenario 2’_j: Disrupt Each DC in Scenario 2 

In Scenario 2’_j, the optimized network structure from Scenario 2_j is fixed, and the 

selected DCs denoted by j of the Scenario 2_j solutions are disrupted one by one to see the 

potential impact of a disruption that might occur to each DC. To model this, we introduced two 

constraints to the base model. 

 

Constraints: 

!!!𝑋!"#$%
&∈()∈*+∈,

= 0, ∀¬𝑆5 (9) 
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!!!!𝑋!"#$%
&∈()∈*+∈,0∈1

= 0, ∀¬𝑑6
"-./ (14) 

The first constraint (Equation (9)) is the one used in Scenario 2. The second constraint 

(Equation (14)) is a slightly different version of Equation (10). While 𝑑"456 is a set of DCs the 

company plans to use, 𝑑8
"456 is the same set of DCs, except that it excludes DC j to model the 

disruption for each sub-scenario. 

3.4.7. Scenario 3’_j: Disrupt Each DC in Scenario 3 

The concept of Scenario 3’_j is the same as the Scenario 2’_j except for the following: 

First, 𝑆"456 in Equation (9) of the Scenario 3’_j is replaced by 𝑆9:;, which is the optimized 

allocation of the manufactures (p) to DCs (d) as a result of Scenario 3’s optimization run.  

Second, 𝑑8
"456 in Equation (14) is replaced by 𝑑89:;, which is a unique set of DCs that is selected 

as a solution to Scenario 3’s optimization but excludes the DC j from the set to represent the 

disruption. 

3.4.8. Scenario 4’_i_j: Disrupt Each DC in Scenario 4_i 

Again, the concept of Scenario 4’_i_j is the same as the Scenario 2’_j except for the 

following: 

First, 𝑆"456 in Equation (9) of the Scenario 2’_j is replaced by 𝑆79:<, which is the optimized 

allocation of the manufactures (p) to DCs (d) as a result of Scenario 4_i optimization run. 

Second, 𝑑8
"456 in Equation (14) is replaced by 𝑑789:<, which is a unique set of DCs that are 

selected as a solution to Scenario 4_i’s optimization but excludes the DC j from the set to 

represent the disruption. 

3.5. Cost Structure 

All the cost variables listed in Section 3.3.1 are calculated from past financial data and 
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logistics data extracted from the company’s systems. In this section, the source of data and the 

calculation process for each variable is explained in detail. Figure 5, adapted from Winkenbach 

& Janjevic (2023), shows the overview of the models’ cost structure.  

 

Figure 5 

Overview of the Models’ Cost Structure 

 

Note. Adapted from “Session 07: Last-mile Logistics Network Design” by Winkenbach, M., & 

Janjevic, M., 2023, SCM.293 / 11.263 / 1.263 Urban Last-Mile Logistics. p. 19. Copyright 2023 

by the Authors. 

 

3.5.1. Operating Costs of Facilities 

Operating costs of facilities (𝑐𝑓"$) represent the fixed expenses incurred by the company 

when managing a manufacturer at a DC. These costs primarily stem from the IT systems and 

hardware required to operate for a manufacturer at a DC. While dependent on the manufacturer 
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(p), these costs remain consistent across different DCs (d). For manufacturers where we could 

not gather this specific cost information, we utilized the average value from other manufacturers 

as a substitute. 

3.5.2. Processing Costs in Facilities 

Processing costs in facilities (𝑐𝑜") represent the variable expenses needed to ship one unit 

(kg) of product from DCs to customers. These costs vary significantly among manufacturers due 

to differences in product attributes and order profiles. For example, some manufacturers produce 

heavy products, such as certain types of liquids, resulting in lower costs per kg compared to 

others. Regarding order profiles, some manufacturers receive orders in pallets or cases, while 

others require individual item picking, which significantly impacts operational efficiency.  

To compute the unit cost, we collected ten months' worth of demand data for each 

manufacturer, along with the operational costs incurred during the same period. These 

operational costs encompass handling, management, packaging material return, and other related 

expenses. We have not incorporated the regional wage difference in our current model, so the 

processing costs are dependent on manufacturers but not DCs. 

3.5.3. Inventory Costs 

Inventory costs (𝑐𝑠") primarily consist of the expenses incurred to store one kg of product 

for each manufacturer. To calculate inventory levels, we introduced inventory turns (𝑖") to 

convert the flow (throughput of DC) into inventory. Inventory turns are calculated using ten 

months' worth of shipment data for each manufacturer, along with the end-of-month inventory 

data for the same period, and then averaging the values for each manufacturer. Furthermore, we 

calculated the inventory cost for each manufacturer using the end-of-month inventory data and 

corresponding cost information from the same period. 
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It is important to note that inventory costs in this model only include the storage costs 

that the company invoices to the manufacturer and do not account for the capital cost of the 

inventory, which is typically owned by the clients. Additionally, our current model does not 

incorporate stepwise inventory turns, meaning that the inventory turns remain constant across 

different levels of throughput. 

3.5.4. Transportation/Shipment Costs 

Our transportation dataset encompassed a diverse array of classifications, enabling us to 

dissect the information into distinct and meaningful categories. These classifications 

encompassed the origin of the journey at the distribution center, the destination at the customer's 

address, the incurred cost, the transportation mode (LTL, FTL, Parcel), and the distinction 

between cold-chain and dry trailer transport. To accurately compute travel distance, we 

employed the address-matching service provided by the Center for Spatial Information Science 

at The University of Tokyo for geocoding municipalities (Center for Spatial Information Science, 

n.d.). We calculated separate costs for each transportation mode and cold/dry combinations. For 

LTL, we delved deeper and partitioned the data, computing costs anchored to the origin DC for 

the dry cargoes and to the destination region for the cold. The rationale behind this approach was 

the sheer volume of LTL shipments, providing ample data for further subdivision, and the 

importance of calculating accurate estimates for this majority shipment type. 

To model the costs of the various network configurations, we needed to calculate the 

transportation costs. Our transportation data contained one row for each shipment from a DC to a 

customer. Two additional fields that we created were DC Area and Destination Area. DC Area 

represents the region that a DC is in (multiple DCs can be in the same region), and Destination 

Area is the region where the delivery to the customer is made. The Areas are 01_Hokkaido', 



 

 47 | 73 

 

'02_Tohoku', '03_Shuto', '04_Chubu', '05_Hokuriku', '06_Kinki', '07_Chugoku', '08_Shikoku', 

'09_Kyushu. “Area” used in this context is analogous to US regions like the Northeast or Pacific 

Northwest. But Hokkaido is a special case where it is both an area and a prefecture. 

The DCs and customer information were used to geocode the origin and destination of 

each shipment using the University of Tokyo’s CSV Address Matching Service (Center for 

Spatial Information Science, n.d.). We were then able to calculate the distance for each shipment 

as a new field. This allowed us to create a field calculated by shipment Weight*Distance. Coupa 

has different cost representations available, and this is the option for Coupa that we thought was 

most appropriate. We then removed rows with data containing null values in any of the following 

fields: DC, Manufacturer, Weight, Cost, Distance, Mode, Temperature, or Destination.  

Before starting the regressions, we divided the data into four modes and temperature: 

cold chain (cold) or not (dry). The three modes are Less than Truck Load (LTL), Full Truck Load 

(FTL), and Parcel. There exists every combination of these parameters except FTL Cold, for 

example: LTL Cold, LTL Dry, FTL Cold, FTL Dry, Parcel Cold, Parcel Dry. FTL Cold was 

excluded, however, because there were single-digit rows in this category. We then further divided 

the transportation data into more specific categories to increase the accuracy of the transportation 

cost representation. LTL Dry data was divided by DC Area. LTL Cold, Parcel Dry, and Parcel 

Cold were divided by Destination Area. This is because the LTL Cold, Parcel Dry, and Parcel 

Cold prices are determined by the destination of the delivery, while LTL dry prices are 

determined by the starting location. For Parcels, this may be intuitive, but it was not intuitive that 

LTL Dry and LTL Cold contracts would be structured this way. We first observed this 

relationship after analyzing the data, so we then investigated with the company. After informing 

them of the pattern we were observing, they confirmed that was how LTL contracts are defined. 
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There was not enough data to run a separate regression for each FTL region. 

We ran a regression on each mode-temperature pair (e.g., LTL Cold) with 

Weight*Distance as the independent variable and cost as the independent variable. We noticed 

Parcels (both Cold and Dry) with Destination Areas of 03_Shuto and 06_Kinki had poor results 

compared to Parcels delivered to other areas. Those two areas contain large DCs for the two most 

populous regions in Japan, with Shuto containing Tokyo and Kinki containing Osaka and Kyoto. 

We hypothesized that most of the Parcels being delivered in those areas were also originating in 

those areas. Furthermore, since Parcel rates were determined by originating area and destination 

area, the distance would not matter for intra-area shipments. 

We examined the data and determined that a vast majority of parcels delivered in those 

areas were indeed also originating in their respective area. After changing the independent 

variable from Weight*Distance to Weight for Shuto and Kinki, our regressions produced more 

accurate results. Parcels arriving in other areas mainly had origin areas different than their 

delivery areas. So, for these shipments, Distance served as a proxy for how far away the 

originating Area was, which affected the cost along with Weight. Unfortunately, we needed to 

continue to use Weight*Distance as the independent variable for Shuto and Kinki instead of only 

Weight. Otherwise, the optimization model would assign the same transportation cost to a Parcel 

delivered to Kinki and originating in Kinki as one delivered from Hokkaido. 

We then reconsolidated the LTL Dry data into DCs located in eastern Japan and those 

located in western Japan. This is because some of our new network configurations were testing 

the addition of DC locations in areas with no current DCs. We, therefore, would not have 

estimated transport costs for those new areas. By dividing the data into eastern and western 

Japan, we could use eastern Japan’s cost estimate for any new DCs in the eastern half of Japan 
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and western Japan’s cost estimate for any new DC in the western half of Japan. LTL Cold, Parcel 

Dry, and Parcel Cold do not have this problem because the data was divided by destination area, 

and the destination area for each shipment does not change even if that shipment is modeled 

using a previously non-existent DC. Table 7 shows the transportation combinations where we 

calculated an individual cost using regression. 

 

Table 7 
 
List of Transportation Modes, Temperatures, and Origin/Destination Combinations 
 

Mode Temp DC/Des-na-on area 
LTL Dry DC, Eastern Japan 
LTL Dry DC, Western Japan 
LTL Cold Des5na5on, 01_Hokkaido 
LTL Cold Des5na5on, 02_Tohoku 
LTL Cold Des5na5on, 03_Shuto 
LTL Cold Des5na5on, 04_Chubu 
LTL Cold Des5na5on, 05_Hokuriku 
LTL Cold Des5na5on, 06_Kinki 
LTL Cold Des5na5on, 07_Chugoku 
LTL Cold Des5na5on, 08_Shikoku 
LTL Cold Des5na5on, 09_Kyushu 
Parcel Dry Des5na5on, 01_Hokkaido 
Parcel Dry Des5na5on, 02_Tohoku 
Parcel Dry Des5na5on, 03_Shuto 
Parcel Dry Des5na5on, 04_Chubu 
Parcel Dry Des5na5on, 05_Hokuriku 
Parcel Dry Des5na5on, 06_Kinki 
Parcel Dry Des5na5on, 07_Chugoku 
Parcel Dry Des5na5on, 08_Shikoku 
Parcel Dry Des5na5on, 09_Kyushu 
Parcel Cold Des5na5on, 01_Hokkaido 
Parcel Cold Des5na5on, 02_Tohoku 
Parcel Cold Des5na5on, 03_Shuto 
Parcel Cold Des5na5on, 04_Chubu 
Parcel Cold Des5na5on, 05_Hokuriku 
Parcel Cold Des5na5on, 06_Kinki 
Parcel Cold Des5na5on, 07_Chugoku 
Parcel Cold Des5na5on, 08_Shikoku 
Parcel Cold Des5na5on, 09_Kyushu 
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Chapter 4. Results 

In this chapter, we discuss the results of the optimization scenarios discussed in Chapter 

3. 

4.1. Research Question 1 (Q.1) 

The answer to Q.1 examines the impact of a warehouse disruption on the company's 

logistics network in terms of cost and transportation distance (a proxy for lead time). To address 

this question, we developed two scenarios: Baseline and Scenario 1. The Baseline scenario 

accurately replicates the network and logistics flow that transpired after the disruption. In 

Scenario 1, we used the same demand data as the Baseline but removed the disruption's effect by 

continuing to use the disrupted DC (DC_01) and maintaining the pre-disruption flow, allowing 

us to compute the logistics cost. Figure 6 illustrates the cost difference by period between the two 

scenarios.  
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Figure 6 

Total Logistics Cost of Baseline and Scenario 1 by Period 

 

Note. Created from optimization result of Baseline (BL) and Scenario 1 (SC_1). The length of a 

period is one month. 

 

 In Period 1, immediately following the disruption, the total logistics cost increased by 

31 million JPY (+7.4%) as a direct consequence of the incident. However, the company initiated 

the launch of a temporary facility near the affected site to accommodate the demand previously 

served by the disrupted location. Consequently, by Period 9, the additional costs incurred due to 

the disruption were reduced to a mere 5 million JPY (+1.1%). Figure 7 shows the timeline of the 

temporary facilities’ openings. 
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Figure 7 

Manufacturer Allocations to Existing DCs 

  

Note. All manufacturers considered in our research stored inventory in DC_01, which was the 

disrupted facility. After the disruption, their products were shipped from facilities indicated in 

blue. They continued to fulfill most of the demand from these facilities but at higher 

transportation costs. Eventually, the company opened temporary facilities indicated in yellow, 

which are closer to DC_01. DC_41 is the planned DC that will replace the disrupted DC_01. 

 

Figure 8 illustrates the total logistics costs for both Baseline and Scenario 1, as well as 

the factors contributing to the differences in total costs. Over the course of nine periods, the total 

cost for Scenario 1 amounts to 3,661 million JPY, while the Baseline registers a total cost of 

3,774 million JPY, as depicted in the graph. The estimated additional cost resulting from the 

disruption is 113 million JPY. As can be observed in the graph, the largest contributor to this 

increase is the DC-Customer transportation costs, which escalated by 139 million JPY. This 

outcome is understandable, considering that the disruption of the DC in the Kinki region 

necessitated covering the demand previously met by this facility through other DCs, primarily in 
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Shuto. Consequently, both transportation distance and costs increased.  

 

Figure 8 

Waterfall Chart: Comparison of Total Logistics Costs between Scenario 1 and Baseline 

 

Note. Created from optimization result of Baseline (BL) and Scenario 1 (SC_1). The logistics 

cost is the sum of nine periods. 

 

4.2. Research Question 2 (Q.2) 

Q.2 examines the future network after the substitute facility is launched. In addition, we 

examined the possibility of adding a further additional DC to the network and enforcing a third 

stock point for each manufacturer. To address this question, we developed three scenarios: 

Scenario 2, Scenario 3, and Scenario 4_i. Keep in mind that Scenario 4_i includes five sub-

scenarios denoted by i, where each sub-scenario represents an additional new DC in one of five 
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various regions of Japan. Scenario 2 replicates the network and logistics flow of the company’s 

plan of adding a substitute DC near the disrupted DC, (DC_01). The sponsor company’s plan 

includes the specific location of the substitute facility and the allocation of manufacturers to each 

DC. In Scenario 3, we alleviate the manufacturer allocation constraint to allow the model to 

optimize the allocation. The intent is to examine the efficiency of their current plan. In Scenario 

4_i, in addition to the locations utilized in Scenario 2, we added one more potential location and 

forced each manufacturer to be assigned to three DCs. 

Figure 9 illustrates the total logistics costs of all scenarios except resiliency scenarios. 

First, when comparing Scenario 2 and Scenario 3, the cost difference amounts to a mere 13 

million JPY over nine months, indicating that there is no significant difference between the 

company's manufacturer allocation plan and the optimal allocation. Second, among the various 

scenarios, Scenario 4_3 demonstrates the lowest cost at 3,520 million JPY over nine months. In 

this scenario, we introduced a new DC in Nagoya, which is situated in the central part of Japan. 

All other scenarios resulted in higher costs than Scenario 3, suggesting that the addition of a 

facility contributes to the overall increase in logistics costs. However, Scenario 4_3 was the 

exception and proved to be marginally more cost-effective than Scenario 3.  
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Figure 9 

Comparison of Total Logistics Cost for Cost Optimization Scenarios 

 

Note. Created from the optimization results of all cost optimization scenarios. The logistics costs 

are the sum of nine periods. 

 

4.3. Research Question 3 (Q.3) 

Answering Q.3 evaluates the resiliency of the networks generated from the scenarios 

presented in Section 4.2. To address this question, we developed Scenario 2’_j, Scenario 3’_j, 

and Scenario 4’_i_j, which represent the disrupted versions of Scenario 2, Scenario 3, and 

Scenario 4_i from Section 4.2. Each disruption scenario contains a number of sub-scenarios 

representing each DC contained within. The letter j represents the single DC that is disrupted in 

the sub-scenario, and the total number of j’s equals the number of DCs present in the 

corresponding undisrupted scenarios. For example, Scenario 2 has seven DCs, so Scenario 2’_j 

has seven sub-scenarios: Scenario 2’_1 through Scenario 2’_7. 

Figure 10 presents a comparison of the minimized total logistics costs for Scenario 2, 
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Scenario 3, and Scenario 4_i, alongside the individual total logistics costs of their corresponding 

resiliency evaluation scenarios—namely, Scenario 2’_j, Scenario 3’_j, and Scenario 4’_i_j.  

Additionally, Figure 10 also displays the average logistics costs for each of these scenarios. 

 

Figure 10 

The Total Logistics Cost of Cost Optimization Scenarios and the Average Total Logistics Cost of 

Disruption Scenarios  

 

Note. Created from optimization results of all scenarios. The logistics costs are the sum of nine 

periods. 

 

First, when comparing Scenario 2 and Scenario 3, Scenario 3 exhibits a marginally lower 

total cost, but the average cost of disruption scenarios is higher than that of Scenario 2. Beyond 

the average, the maximum loss is also greater for Scenario 3, as one of the dots indicates a 
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logistics cost of 3,900M JPY in the case where DC_24 faces disruption.  

Second, when comparing scenarios from Scenario 4_1 to Scenario 4_5, Scenario 4_3, 

where a new facility is added in Nagoya, Aichi Prefecture, displays the lowest optimized cost 

and the lowest average cost of disruption scenarios. The maximum loss is also the smallest in 

Scenario 4_3. 

Lastly, when comparing Scenario 2 and Scenario 4_3, both the optimized cost and 

average cost of disruption are lower for Scenario 4_3. It is worth noting that all Scenario 4_i 

scenarios (three DCs for each manufacturer) exhibit lower average disruption costs compared to 

Scenario 2 and Scenario 3 (two DCs for each manufacturer).  

Figure 11 displays the weighted average distance for DC-Customer shipments instead of 

costs as depicted in Figure 10. The structure of the Figure 11’s graph is consistent with Figure 

10. 
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Figure 11 

Weighted Average Delivery Distance from DCs to Customers of Cost Optimization Scenarios and 

Disruption Scenarios 

 

Note. Created from optimization results of all scenarios. The distance is the weighted average by 

shipment weight. 

 
First, when Scenario 2 and Scenario 3 are compared, Scenario 2 presents a slightly lower 

distance for both non-disrupted scenarios and the average of disruption scenarios. In addition to 

the average, the maximum distance is also smaller for Scenario 2. 

Second, when comparing scenarios from Scenario 4_1 to Scenario 4_5, Scenario 4_3, 

unlike in the total cost comparison, demonstrates the highest average delivery distance. However, 

the maximum and average increases in the distance for disruption scenarios are the smallest in 

this scenario. 
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Lastly, when comparing the two DCs per manufacturer scenarios (Scenario 2 and 3) with 

the three DCs per manufacturer scenarios (Scenario 4_i), overall, the three DC scenarios exhibit 

lower average delivery distances, as one would naturally expect. 

 

Chapter 5. Discussion 

5.1. Discussion of the Results 

In this section, we discuss the results related to each research question and derive 

practical insights from the findings. 

5.1.1. Research Question 1 (Q.1) 

As discussed in Section 4.1, Figure 6 illustrates the rapid +7.4% increase in the costs due 

to the disruption in Period 1, but this decreases to +1.1% in Period 9. Additionally, Figure 7 

demonstrates that most of the increased costs result from the rise in DC-Customer transportation 

costs. This reflects the actual recovery measures implemented by the company. 

There are nine manufacturers that the company serves within this network, all of which 

were affected by the disruption. Each manufacturer had two stock points on the network, except 

for one which had three, so when the disruption occurred, they were all able to continue shipping 

products the next day using an alternate DC, albeit with increased transportation costs. The 

affected DC was located in the Kinki area and served the demand in Kinki and other areas in the 

western part of Japan. Most manufacturers had another stock point in the Shuto area, which 

catered to demand in Shuto and other areas in eastern Japan. Due to the disruption, the DCs in 

the Shuto area needed to cover all parts of Japan, including areas previously served by the 

disrupted facility in the Kinki area, which led to an increase in transportation costs. 

However, the company began opening new temporary facilities to serve demand in the 
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western part of Japan as early as Period 2, which is one month after the disruption. Of the nine 

manufacturers affected by the disruption, six had stock at the temporary facilities in the Kinki 

area by Period 9, with two more set utilize the facilities in Period 11, which is outside the model 

horizon. One manufacturer left the company after the disruption, so by Period 11, the company 

will have completed preparations for temporary facilities for all affected existing manufacturers. 

Figure 6 clearly shows the relationship between the increased costs and the opening of temporary 

facilities. Although we could only collect data until Period 9, it is likely that by Period 11, the 

company had mitigated the increased costs caused by the disruption. 

5.1.2. Research Question 2 (Q.2) 

In Section 4.2, we discussed two findings related to Q.2. First, when comparing Scenario 

2 (the company's recovery plan) with Scenario 3 (optimizing the allocations of manufacturers to 

DCs), the cost difference amounts to 13 million JPY over nine months. Second, among the 

additional DC scenarios (Scenario 4_i), Scenario 4_3, which utilizes the DC in Nagoya, 

demonstrates the lowest cost at 3,520 million JPY over nine months. 

Table 8 displays the percentage of demand served by each DC as part of the solutions for 

optimization scenarios. When comparing Scenario 3 with Scenario 2, Scenario 3 utilizes fewer 

DCs and concentrates 46% of the demand in DC_24. In Scenario 2, 27% of the demand was 

served by DC_41, which is not used in Scenario 3. DC_41 is the DC the company plans to 

develop as a substitute for DC_01, which was destroyed by the disruption. The optimization 

results indicate that the network can achieve lower costs by increasing the capacity of DC_24 

instead of opening DC_41, although the cost difference is small. 
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Table 8 

Percentage of Demand Served by DCs in Scenarios 

 

Note. The table indicates the percentage of demand served by each DC for different optimization 

scenarios. The demand is the sum of Periods 1 to 9. 

 

Scenarios 4_1 to 4_5 are the additional DC scenarios, where DC_31 to 35 are added as 

potential DCs for each scenario. Examining the utilization of the added DCs, DC_33 in Scenario 

4_3 is the most utilized (serving 26% of total demand) among the added DCs. The area where 

DC_33 is located, Nagoya, is the third most populous city in Japan, after Tokyo and Osaka, and 

is geographically situated between these two cities. This geographical feature enables DC_33 to 

have the largest throughput and makes Scenario 4_3 the most cost-efficient network, covering 

the demand that is distant from both DCs in the Tokyo and Osaka areas.  

5.1.3. Research Question 3 (Q.3) 

In Section 4.3, the results of the disruption scenarios were discussed. First, we compared 

the optimization result of Scenarios 2 and 3. While Scenario 3, which removes the constraint of 

BL SC_1 SC_2 SC_3 SC_4_1 SC_4_2 SC_4_3 SC_4_4 SC_4_5
DC_01 34%
DC_11 7% 4% 3% 3% 3% 3% 3% 3%
DC_12 9% 6% 2% 23% 3% 3% 2% 3% 3%
DC_13 40% 33% 21% 5% 21% 18% 20% 21% 21%
DC_14 14% 12% 1% 1% 1%
DC_15 10% 9% 9% 10% 9% 9% 9% 8%
DC_21 1%
DC_22 2% 10% 16% 10% 10% 7% 8% 8%
DC_23 2%
DC_24 14% 2% 26% 46% 26% 25% 16% 24% 26%
DC_31 3%
DC_32 8%
DC_33 26%
DC_34 13%
DC_35 16%
DC_41 27% 23% 24% 16% 19% 21%

DCs
Scenarios
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the manufacturer allocation plan and optimizes the allocations, showed a slight improvement in 

the total cost compared to Scenario 2, which adheres to the allocation plan, it was less resilient in 

our resiliency evaluation. This is because, in Scenario 3, 46% of the demand is fulfilled by 

DC_24, as shown in Table 8, leading to a significant impact when this facility is disrupted and 

bringing up the average cost of disruption scenarios. The total number of DCs used is also less 

for Scenario 3. Scenario 3 uses five DCs, while Scenario 2 uses eight. Additionally, in Scenario 

2, the demand is more evenly distributed among the facilities, which results in a lower maximum 

loss under the disruption scenarios. We also compared the impact on customer delivery distance 

in case of disruption. For the same reason, the increase in the average distance was less for 

Scenario 2. 

Second, we compared the results for Scenario 4_i, the additional DC scenarios. In these 

Scenarios, Scenario 4_3, which added DC_33 in Nagoya, performed best in terms of total 

logistics cost, as elaborated on in Section 5.1.2. Scenario 4_2, which added DC_32 in Sendai (a 

major city in a northern part of Japan) performed best in terms of average customer delivery 

distance. It is also important to note that, although the average customer delivery distance of 

Scenario 4_3 was highest among Scenario 4_i, the increase of the distance in disruption 

scenarios was lowest in Scenario 4_3.  

Figure 12 displays, in log scale, the total demand served by customer distance for 

Scenario 4_2 and Scenario 4_3. These scenarios were chosen because Scenario 4_2 resulted in 

the shortest delivery distance, and Scenario 4_3 resulted in the longest delivery distance. The 

bars highlighted in red show that more demand in the 900 to 1,500 km range is served in 

Scenario 4_3. This demand is mainly from customers in Hokkaido, a northern island of Japan. 

Since, in Scenario 4_3, a new facility is added in the central part of Japan, it does not contribute 
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to reducing the delivery distance for customers in Hokkaido. On the other hand, Scenario 4_2 

adds a new DC in the northern part of Japan, which reduces the distance for those customers. In 

the case of disruptions, however, Scenario 4_3 outperforms Scenario 4_2 because the added DC, 

which is located between Tokyo and Osaka, can efficiently serve customers in those areas when 

local DCs are disrupted. 

 

Figure 12 

Demand by Weight Served by Customer Delivery Distance (Service Distance) Range 

 

Note. The graph indicates the demand (kg) served by all DCs from Period 1 to 9, showing only 

the results of Scenario 4_2 and 4_3. The demand is divided by the service distance from the DCs 

to customers. The demand is in log scale. 

 

5.2. Future Opportunities 

There are opportunities to expand our model to include several aspects of real-world 

supply chain dynamics and enhance the model's comprehensiveness and utility. For example, our 
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model, in its present form, does not account for the implications of inventory pooling and 

economies of scale when assigning manufacturers to multiple DCs. Taking inventory pooling and 

economies of scale into account increases the costs of additional DCs because the same 

inventory would be shared by more locations. 

Additionally, the model does not factor in regional wage discrepancies, which have 

implications for labor cost calculations. An approach incorporating these variations could yield a 

more nuanced understanding of the cost dynamics of DC locations. Similarly, the model remains 

agnostic to regional rent differentials, which directly impact DC costs. Incorporating these 

variations could enhance the model's ability to accurately depict the optimal location for 

additional DCs.  

In terms of infrastructural investments, our model does not fully encapsulate the fixed 

costs associated with the establishment of a new facility. Regional costs would also come into 

play if incorporating fixed costs for new facilities. A more exhaustive analysis of these costs 

could improve the model's predictive accuracy with respect to investment decisions. 

The model also does not account for the capacity constraints of existing DCs. If capacity 

constraints were incorporated into our models and a DC was determined to be at capacity, then it 

would result in different demand and manufacturer allocations and cost outcomes. 

Our reliance on past transportation costs due to a lack of specific truck vendor tariffs 

represents another area for potential improvement. Future iterations of the model could strive to 

integrate accurate vendor tariffs, thereby refining cost predictions and enhancing strategic 

decision-making. 

Lastly, our model employs distance as a surrogate for lead time, not accounting for 

potential cutoff times that less-than-truckload (LTL) vendors may impose. Incorporating such 
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operational constraints could enhance our model's predictive accuracy with respect to delivery 

times. For example, LTL facilities enforce shipment cutoff times to ensure next-day delivery to 

customers. If a shipment from the sponsor company arrives after that cutoff time, then the LTL 

vendor will not ship to the customer until the second day. 

5.3. Supply Chain Resiliency in a 3PL Context 

3PL providers often find themselves without the same tools to enhance resilience as their 

vertically integrated counterparts. For example, a 3PL may not have the ability to increase 

inventory or safety stock when inventory levels are determined by the client. An interesting 

dynamic in the 3PL business model is that their "suppliers" are essentially their customers or 

clients. Further complicating this is the fact that the resilience of these "suppliers" might not be a 

concern for a 3PL, depending on the specifics of the contractual agreement.  

For instance, if a 3PL's contract specifies payment based on a predetermined throughput, 

a disruption at the supplier's end would not necessarily lead to a reduction in the 3PL's revenue. 

This is because the immediate impact of a disruption, a scarcity of products on the shelves, 

primarily tarnishes the client's reputation and sales, leaving the 3PL relatively unscathed. Thus, 

the concept of "supplier" resiliency takes on a different meaning in the context of 3PLs. 

5.4. Recommendations for the Sponsor Company 

In this section, we present three recommendations derived from our research. Our first 

recommendation is for the sponsoring company to continue with their current plan of developing 

the new facility, DC_41, to replace the disrupted facility. The optimization result of Scenario 2 

revealed that the costs of the company's plan for the new facility location and allocation of 

manufacturers are close to Scenario 3, which optimizes the allocation of manufacturers, while 

being more resilient to disruptions than Scenario 3. Our research also indicates that, with 
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appropriate demand allocations to each DC, the new network can reduce the total costs compared 

to the pre-disruption network. The current plan does not include customer allocation to specific 

facilities, but our optimization results provide a detailed assignment of customers, aggregated at 

the municipal level, to each DC. This data can be utilized in the detailed planning of the 

company’s future network. 

Our second recommendation is for the addition of a new DC in the Nagoya area. In the 

current configuration, most manufacturers are assigned two DCs to store and ship products, but 

enforcing three stock points and introducing an additional DC in the Nagoya area may further 

reduce logistics costs and improve resilience to disruptions. Detailed investigations into customer 

delivery distance also revealed that adding a further additional DC in the northern part of Japan, 

(e.g., Sendai), reduces delivery distance, potentially shortening delivery lead times to final 

destinations. 

The delivery distance perspective is important due to the current challenges faced by 

Japan's trucking industry. Since the 1990s, the Japanese trucking industry has become highly 

fragmented due to significant regulatory changes. In 1990, the industry transitioned from a 

difficult license-based application process for new trucking companies to an easier application-

based system, allowing numerous trucking companies to enter the market. This has led to 

increased competition, low profit margins, and low salaries for truck drivers, making it difficult 

to attract new talent to the industry. 

The upcoming "Year 2024" challenge, where regulations to reducing overworked truck 

drivers' hours will be implemented, is expected to exacerbate the labor shortage. Japan's rapidly 

aging population and shrinking labor force, combined with the growing e-commerce sector, 

further strain the already insufficient supply of labor. To cope with this situation and mitigate the 
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burden on the industry and drivers, we recommend that the company considers scenarios with 

additional DCs to reduce driving distances. 

Our third recommendation is for the company to utilize digital network models for their 

planning and operations. The analysis related to Q.1 revealed that the digital network model can 

accurately grasp the quantitative impact of disruptions and the effectiveness of countermeasures, 

such as opening temporary facilities. The digital network model can be utilized in two ways: 

The first use case is contingency planning after disruptions. In answering Q.1, we utilized 

past data to quantify the impact of disruptions and countermeasures. However, if during a 

disruption, the company has the model and necessary data on hand they can develop contingency 

plans in real-time. With the model and data, it is easy to create and compare scenarios and decide 

on appropriate measures based on the results. 

The second use case is business continuity planning. For answering Q.3, we developed 

various scenarios anticipating future potential disruptions and estimated the impact of those 

disruptions on the network. Anticipating disruptions and having a playbook beforehand will 

significantly reduce the actual impact of disruptions. 

To realize these use cases, a sophisticated model and reliable data are necessary. For 

model sophistication, focusing on the points described in Section 5.2 is essential. In terms of 

data, different types of data, such as customer demand, existing facility, product information, and 

relevant costs, must be in a state that can easily be integrated into the model for analysis. A 

detailed definition of data requirements, such as periods, granularities, keys, attributes, and an 

appropriate data management process, is required. 
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Chapter 6. Conclusion 

Our project sponsor experienced a severe disruption that destroyed one of their major 

DCs. This disruption led to increased lead times, degraded service levels, and higher logistics 

costs, even resulting in the loss of a customer. These consequences prompted the company to 

focus on supply chain disruptions and resiliency studies. We aimed to answer three fundamental 

questions: First, what was the quantitative loss caused by the disruption? Second, how should we 

rebuild the network to recover from the disruption? Third, how can we add resiliency to mitigate 

potential future disruptions? 

To answer these questions, we collected real-world data spanning two years, which 

included the disruption the company faced, and developed mixed-integer linear programming 

(MILP) models. Numerous discussions with the sponsor company contributed to our 

understanding of the specific industry focused on in our research, the fundamental cost structure 

of their business, and the representation of these elements in our models. Additionally, we 

developed practical optimization scenarios through these discussions, which were used for 

further scenario planning analysis. 

To answer the first question, we created two scenarios to compare: the actual network and 

flow after the disruption and an imaginary network and flow where the disruption did not occur. 

The comparison of these scenarios provided us with the quantitative financial loss caused by the 

disruption. It also highlighted how the costs evolved over time as the company started to recover 

from the disruption by implementing temporary facilities near the affected DC. The cost increase 

caused by the disruption was +7.4% in the first month, but after nine months, it was reduced to 

+1.1%, demonstrating that their prompt establishment of emergency temporary facilities 

contributed to rapid recovery. As stated in Section 2.1, the sponsor company utilized all reactive 
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node-based resilience measures; flexible capacity at the facilities, reassigning of customers, and 

expansion of facility capacity, reflecting their preparedness for the disruption. 

Now, the company has a plan to develop an equivalent-sized facility to replace the 

temporary facilities, which can be considered a true recovery from the disruption. We addressed 

the second question by evaluating their plan and comparing it to other network configurations, 

such as changing the allocations of manufacturers to DCs and adding a further additional DC in 

another region. Our results show that the company’s planned location for the new DC is efficient, 

reducing the total cost by 3.5% compared to the pre-disruption network and would result in an 

improved post-disruption network. We also optimized the allocation of manufacturers to each 

DC using the same set of DCs as their plan, but the improvement was merely 0.4% compared to 

their allocation plan. We created scenarios to add another DC in regions where they currently do 

not operate a DC. Some additional locations showed a slight improvement in cost compared to 

their current plan. Among those, an additional DC in Nagoya, located in the central part of Japan, 

exhibited the best performance, improving the total cost by 0.4%. 

To answer the third question, we evaluated the resiliency of the optimized solutions for 

different network configurations discussed in the previous paragraph, such as the company's 

recovery plan and additional DC scenarios. One interesting finding was that their current plan for 

manufacturer allocations was more resilient than the cost-minimized allocations. Considering the 

slight improvement in the total cost and taking resiliency into account, their current plan may be 

superior to the cost-minimized solution. Additionally, among the additional DC scenarios, the 

scenario that adds a Nagoya DC, again, demonstrated the best performance in terms of resiliency. 

It may be worth considering Nagoya as a future network improvement plan after implementing 

their recovery strategy. 
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During our research, we have illuminated the fiscal implications of high-impact, low-

probability events for our sponsor company. Yet, it is crucial to acknowledge that our study 

touches upon merely a fragment of the potential economic aftermath of a supply chain 

disruption. 

For example, this disruption necessitated the redeployment of high-salary office 

professionals to the remaining and temporary DCs. Our analysis does not account for these 

additional labor expenditures, nor does it incorporate the financial impact of these individuals 

being diverted from their customary roles. 

Additionally, there are potential ripple effects from such a disruption. Potential initiatives 

could be shelved, insurance premiums may soar, a valuable reputation could be tarnished, and 

loyal clients could be lost to the competition. Our study does not venture into quantifying these 

potential losses, yet they are undeniably critical considerations. 

As an organization deliberates over the financial feasibility of investing in supply chain 

resilience, it is important that it grasps the full spectrum of potential costs associated with the 

alternatives. It is not merely about weighing the immediate costs against benefits; it is about 

understanding the depth and breadth of the consequences, seen and unseen, that can emanate 

from an unanticipated disruption. This understanding requires a lens of wisdom, foresight, and a 

deep appreciation for the intricate interconnectivity of today's global supply chains. 

Our research revealed the quantitative loss caused by the disruption, evaluated and 

justified their recovery plan, and presented the possibility of adding an additional DC in a new 

region to reduce total logistics costs and increase the resiliency of their network. We hope this 

research serves as an opportunity for the sponsor company to begin fully utilizing optimization 

models of their 3PL networks to understand the complex trade-offs of their supply chain and 
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support strategic decision-making that balances efficiency and resiliency. 
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